DOI QR코드

DOI QR Code

Image Enhancement for Visual SLAM in Low Illumination

저조도 환경에서 Visual SLAM을 위한 이미지 개선 방법

  • Donggil You (Department of Robotics, Kwangwoon University) ;
  • Jihoon Jung (Department of Robotics, Kwangwoon University) ;
  • Hyeongjun Jeon (Department of Robotics, Kwangwoon University) ;
  • Changwan Han (Department of Robotics, Kwangwoon University) ;
  • Ilwoo Park (Department of Robotics, Kwangwoon University) ;
  • Junghyun Oh (Department of Robotics, Kwangwoon University)
  • Received : 2022.10.31
  • Accepted : 2022.12.03
  • Published : 2023.02.28

Abstract

As cameras have become primary sensors for mobile robots, vision based Simultaneous Localization and Mapping (SLAM) has achieved impressive results with the recent development of computer vision and deep learning. However, vision information has a disadvantage in that a lot of information disappears in a low-light environment. To overcome the problem, we propose an image enhancement method to perform visual SLAM in a low-light environment. Using the deep generative adversarial models and modified gamma correction, the quality of low-light images were improved. The proposed method is less sharp than the existing method, but it can be applied to ORB-SLAM in real time by dramatically reducing the amount of computation. The experimental results were able to prove the validity of the proposed method by applying to public Dataset TUM and VIVID++.

Keywords

Acknowledgement

This paper was supported by Korea Institute for Advancement of Technology(KIAT) grant funded by the Korea Government(MOTIE) (P0017124, HRD Program for Industrial Innovation)

References

  1. C. Yu, Z. Liu, X. Liu, and F. Xie, "DSSLAM: A Semantic Visual SLAM towards DynamicEnvironments," IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Madrid, Spain, 2018, DOI: 10.1109/IROS.2018.8593691. 
  2. Y. Liu and J. Miura, "RDS-SLAM: Real-Time Dynamic SLAM Using Semantic Segmentation Methods," IEEE Access, vol. 9, pp. 23772-23785, 2020, DOI: 10.1109/ACCESS.2021.3050617. 
  3. A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and F. Moreno-Noguer, "PL-SLAM: Real-Time Monocular Visual SLAM with Points and Lies," IEEE International Conference on Robotics and Automation(ICRA), Singapore, 2017, DOI: 10.1109/ICRA.2017.7989522. 
  4. R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, "ORB-SLAM: A Versatile and Accurate Monocular SLAM System," IEEE Transactions on Robotics, vol. 31, no. 5, Oct., 2015, pp. 1147-1163, DOI: 10.1109/TRO.2015.2463671. 
  5. J. Engel, T. Schops, and D. Cremers, "LSD-SLAM: Large-Scale Direct monocular SLAM," European Conference on Computer Vision, 2014, DOI: 10.1007/978-3-319-10605-2_54. 
  6. A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and F. Moreno-Noguer, "PL-SLAM: Real-Time Monocular Visual SLAM with Points and Lies," IEEE International Conference on Robotics and Automation(ICRA), Singapore, 2017, DOI: 10.1109/ICRA.2017.7989522. 
  7. L. Chen, L. Sun, T. Yang, L. Fan, K. Huang, and Z. Xuanyuan, "RGB-T SLAM: A flexible SLAM framework by combining appearance and thermal information," IEEE International Conference on Robotics and Automation (ICRA), Singapore, 2017, DOI: 10.1109/ICRA.2017.7989668. 
  8. L. Hao, H. Li, Q. Zhang, X. Hu, and J. Cheng, "LMVI-SLAM: Robust Low-Light Monocular Visual-Inertial Simultaneous Localization and Mapping," IEEE International Conference on Robotics and Biomimetics, Dali, China, 2019, DOI: 10.1109/ROBIO49542.2019.8961635. 
  9. J. Wang, R. Wang, and A. Wu, "Improved Gamma Correction for Visual SLAM in Low-Light Scenes," IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Chongqing, China, 2019, DOI: 10.1109/IMCEC46724.2019.8983904. 
  10. S. Zhang, Y. zhi, S. Lu, Z. Lin "Monocular Vision SLAM Research for Parking Environment with Low Light," International Journal of Automotive Technology, vol. 23, Jun., 2022, pp. 693-703, DOI: 10.1007/s12239-022-0063-5. 
  11. X. Tao, H. Gao, X. Shen, J. Wang, and J. Jia, "Scale-recurrent Network for Deep Image Deblurring," Computer Vision and Pattern Recognition, 2018, DOI: 10.48550/arXiv.1802.01770. 
  12. Y. Yan, W. Ren, Y. Guo, R. Wang, and X. Cao, "Image Deblurring via Extreme Channels Prior," Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 2017, DOI: 10.1109/CVPR.2017.738. 
  13. O. Kupyn, T. Martyniuk, J. Wu, and Z. Wang, "DeblurGAN-v2: Deblurring (Orders-of-Magnitude) Faster and Better," International Conference on Computer Vision (ICCV), Seoul, Korea (South), 2019, DOI: 10.1109/ICCV.2019.00897. 
  14. Buiu, C., Danaila, V.-R., and Raduta, C. N. "MobileNetV2 Ensemble for Cervical Precancerous Lesions Classification," Processes, vol. 8, no. 5, 2020, DOI: 10.3390/pr8050595. 
  15. T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection," Computer Vision and Pattern Recognition, 2017, DOI: 10.48550/arXiv.1612.03144. 
  16. M. Sharifi, M. Fathy, and M. T. Mahmoudi, "A classified and comparative study of edge detection algorithms," International Conference on Information Technology: Coding and Computing (ITCC), Las Vegas, NV, USA, 2002, DOI: 10.1109/ITCC.2002.1000371. 
  17. E. H. Land and J. J. McCann "Ligthness and Retinex Theory," Journal of the Optical Society of America, vol. 61, no. 1, pp. 1-11, 1971, DOI: 10.1364/JOSA.61.000001. 
  18. R. T. Rockafellar, "Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming," SLAM Journal on Control, vol. 12. No. 2, 1974, DOI: 10.1137/0312021. 
  19. S. -C. Huang, F.-C. Cheng, and Y.-S. Chiu, "Efficient Contrast Enhancement Using Adaptive Gamma Correction With Weighting Distribution," IEEE Trans. Image Process, vol. 22, no. 3, pp. 1032-1041, Mar., 2013, DOI: 10.1109/TIP.2012.2226047. 
  20. L. Ferreira, S. Malkowsky, P. Persson, K. Astrom, and L. Liu, "Reconfigurable Multi-Access Pattern Vector Memory for Real-Time ORB Feature Extraction," IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021, DOI: 10.1109/ISCAS51556.2021.9401698. 
  21. J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, "A benchmark for the evaluation of RGB-D SLAM systems," IEEE International Workshop on Intelligent Robots and Systems (IROS), Vilamoura, Portugal, 2012, DOI: 10.1109/IROS.2012.6385773. 
  22. A. J. Lee, Y. Cho, Y.-S. Shin, A. Kim, and H. Myung, "ViViD++: Vision for Visibility Dataset," IEEE Rootics and Automation Letters, vol. 7, no. 3, pp. 6282-6289, Jul., 2022, DOI: 10.1109/LRA.2022.3168335. 
  23. R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, "ORB-SLAM: A Versatile and Accurate Monocular SLAM System," IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, Oct., 2015, DOI: 10.1109/TRO.2015.2463671.