• 제목/요약/키워드: SLAB model

검색결과 659건 처리시간 0.025초

Effect of fiber reinforcing on instantaneous deflection of self-compacting concrete one-way slabs under early-age loading

  • Vakhshouri, Behnam;Nejadi, Shami
    • Structural Engineering and Mechanics
    • /
    • 제67권2호
    • /
    • pp.155-163
    • /
    • 2018
  • The Early-age construction loading and changing properties of concrete, especially in the multi-story structures can affect the slab deflection, significantly. Based on previously conducted experiment on eight simply-supported one-way slabs this paper investigates the effect of concrete type, fiber type and content, loading value, cracking moment, ultimate moment and applied moment on the instantaneous deflection of Self-Compacting Concrete (SCC) slabs. Two distinct loading levels equal to 30% and 40% of the ultimate capacity of the slab section were applied on the slabs at the age of 14 days. A wide range of the existing models of the effective moment of inertia which are mainly developed for conventional concrete elements, were investigated. Comparison of the experimental deflection values with predictions of the existing models shows considerable differences between the recorded and estimated instantaneous deflection of SCC slabs. Calculated elastic deflection of slabs at the ages of 14 and 28 days were also compared with the experimental deflection of slabs. Based on sensitivity analysis of the effective parameters, a new model is proposed and verified to predict the effective moment of inertia in SCC slabs with and without fiber reinforcing under two different loading levels at the age of 14 days.

Experimental and numerical simulation study on fracture properties of self-compacting rubberized concrete slabs

  • Wang, Jiajia;Chen, Xudong;Bu, Jingwu;Guo, Shengshan
    • Computers and Concrete
    • /
    • 제24권4호
    • /
    • pp.283-293
    • /
    • 2019
  • The limited availability of raw materials and increasing service demands for pavements pose a unique challenge in terms of pavement design and concrete material selection. The self-compacting rubberized concrete (SCRC) can be used in pavement design. The SCRC pavement slab has advantages of excellent toughness, anti-fatigue and convenient construction. On the premise of satisfying the strength, the SCRC can increase the ductility of pavement slab. The aim of this investigation is proposing a new method to predict the crack growth and flexural capacity of large-scale SCRC slabs. The mechanical properties of SCRC are obtained from experiments on small-scale SCRC specimens. With the increasing of the specimen depth, the bearing capacity of SCRC beams decreases at the same initial crack-depth ratio. By constructing extended finite element method (XFEM) models, crack growth and flexural capacity of large-scale SCRC slabs with different fracture types and force conditions can be predicted. Considering the diversity of fracture types and force conditions of the concrete pavement slab, the corresponding test was used to verify the reliability of the prediction model. The crack growth and flexural capacity of SCRC slabs can be obtained from XFEM models. It is convenient to conduct the experiment and can save cost.

Non-uniform shrinkage in simply-supported composite steel-concrete slabs

  • Al-Deen, Safat;Ranzi, Gianluca;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제18권2호
    • /
    • pp.375-394
    • /
    • 2015
  • This paper presents the results of four long-term experiments carried out to investigate the time-dependent behaviour of composite floor slabs with particular attention devoted to the development of non-uniform shrinkage through the slab thickness. This is produced by the presence of the steel deck which prevents moisture egress to occur from the underside of the slab. To observe the influence of different drying conditions on the development of shrinkage, the four 3.3 m long specimens consisted of two composite slabs cast on Stramit Condeck $HP^{(R)}$ steel deck and two reinforced concrete slabs, with the latter ones having both faces exposed for drying. During the long-term tests, the samples were maintained in a simply-supported configuration subjected to their own self-weight, creep and shrinkage for four months. Separate concrete samples were prepared and used to measure the development of shrinkage through the slab thickness over time for different drying conditions. A theoretical model was used to predict the time-dependent behaviour of the composite and reinforced concrete slabs. This approach was able to account for the occurrence of non-uniform shrinkage and comparisons between numerical results and experimental measurements showed good agreement. This work highlights the importance of considering the shrinkage gradient in predicting shrinkage deformations of composite slabs. Further comparisons with experimental results are required to properly validate the adequacy of the proposed approach for its use in routine design.

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • 제39권3호
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.

New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: Analysis and modeling

  • Tahar, Hassaine Daouadji;Tayeb, Bensatallah;Abderezak, Rabahi;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.319-332
    • /
    • 2021
  • The wood-concrete composite is an interesting solution in the field of Civil Engineering to create high performance bending elements for bridges, as well as in the building construction for the design of wood concrete floor systems. The authors of this paper has been working for the past few years on the development of the bonding process as applied to wood-concrete composite structures. Contrary to conventional joining connectors, this assembling technique does ensure an almost perfect connection between wood and concrete. This paper presents a careful theoretical investigation into interfacial stresses at the level of the two interfaces in composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate under a uniformly distributed load. The model is based on equilibrium and deformations compatibility requirements in all parts of the strengthened composite beam, i.e., the wooden beam, RC slab, the CFRP plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. This research is helpful for the understanding on mechanical behaviour of the interface and design of the CFRP- wooden-concrete hybrid structures.

An analytical solution for buckling failure of rock slopes based on elastoplastic slab theory

  • Zhihong Zhang;Pengyu Wu;Fuchu Dai;Renjiang Li;Xiaoming Zhao;Shu Jiang
    • Geomechanics and Engineering
    • /
    • 제37권1호
    • /
    • pp.1-8
    • /
    • 2024
  • Buckling failure is one of the classical types of catastrophic landslides developing on inclination-paralleled rock slopes, which is mainly governed by its self-weight, earthquake and ground water. However, nearly none of the existing studies fully consider the influence of slope self-weight, earthquake and ground water on the mechanical model of buckling failure. In this paper, based on energy equilibrium principle and elastoplastic slab theory, a thorough mechanical analysis on bucking slopes has been carried out. Furthermore, an analytical solution for slip bucking failure of rock slopes has been proposed, which fully considers the effect of slope self-weight, seismic force and hydrostatic pressure. Finally, the methodology is used to conduct comparative analysis with other analytical solutions for three practical buckling studies. The results show that the proposed approach is capable of providing a more accurate and reasonable evaluation for stability of rock slopes with potential buckling failure.

슬래브법을 이용한 회전 다이 플랜지 업세팅 공정 해석 (An analysis of torsional flange-upsetting process based on slab method)

  • 박재훈
    • Design & Manufacturing
    • /
    • 제18권2호
    • /
    • pp.29-34
    • /
    • 2024
  • This study intends to reduce forming load by adding die rotation to flange-upsetting process. Materials arc formed by the compression and rotational torque which are accrued from rotation of the lower die accompanied by axial compression of the punch. For the theoretic analysis of flange-upsetting process using rotation die, slab method was used. Furthermore, for the verification of the theoretic analysis results, FEM simulation using DEFORM 3D a commercial software was done, and through the model material experiment using Prasticine, the results were compared and reviewed. Flange-upsetting process using rotation die shows reduced forming load compared with process without die rotation and demonstrates uniform distribution of strain. And as for the effect of the reduction of forming load, the less the aspect ratio(h0/d0) and the greater friction coefficient, the greater effect is. With increase in die rotation velocity, the effect of forming load reduction also increases little by little, but its effect on forming load reduction is very negligible compared with other forming parameters. Theoretic analysis results and simulation results coincided pretty well. The flange-upsetting process using die rotation are evaluated as useful process that can produce reduction of forming load and uniform strain.

Flexural performances of deep-deck plate slabs: Experimental and numerical approaches

  • Inwook Heo;Sun-Jin Han;Khaliunaa Darkhanbat;Seung-Ho Choi;Sung Bae Kim;Kang Su Kim
    • Steel and Composite Structures
    • /
    • 제52권3호
    • /
    • pp.313-325
    • /
    • 2024
  • This work presents experimental and numerical investigations on the flexural performances of composite deep-deck plate slabs. Seven deep-deck plate slab specimens with topping concrete were fabricated; the height of the topping slab as well as presence and type of shear connector were set as the main variables to perform bending experiments. The flexural behaviors of the specimens and composite behaviors of the deck plate and concrete were analyzed in detail. The contributions of the deck plate to the flexural stiffness and strength of the slab were identified through finite element (FE) analysis. FE analysis was carried out using the validated FE model by considering the varying bond strengths of the deck plates and concrete, thickness of the deck plate, and types and spacings of the shear connectors. Based on the results, the degree of composite of the deep-deck plate was examined, and a flexural strength equation for the composite deck plate slabs was proposed.

수평하중을 받는 플랫 플레이트 슬래브 해석을 위한 수정된 등가골조모델 (A Modified Equivalent Frame Model for Plat Plate Slabs Under Lateral Loads)

  • 한상환;박영미
    • 콘크리트학회논문집
    • /
    • 제17권3호
    • /
    • pp.419-426
    • /
    • 2005
  • 본 연구는 수평하중을 받는 플랫 플레이트 슬래브 해석을 위한 수정된 등가골조 모델을 제안한 것이다. ACI 318 (2000)은 중력하중 뿐만 아니라 수평하중을 받는 2 방향 슬래브 해석을 위해 등가골조 모델을 허용하고 있다. ACI 318 (2000)에서 채택하고 있는 등가골조 모델은 중력하중을 고려하여 발전되었기 때문에, 수평하중하의 플랫 플레이트 슬래브의 거동을 정확하게 예측하지 못할지 모른다. 따라서 본 연구는 수평하중 하의 플랫 플레이트 슬래브에 대한 더 정확한 해답을 줄 수 있는 수정된 등가골조 모델을 발전시켰다. 수평하중이 지배적인 경우, 이 모델은 기존 등가골조 모델보다 플랫 플레이트 슬래브 시스템의 구성요소 슬래브, 기둥, 비틀림 부재에 대한 더 정확한 힘의 전달 메커니즘을 반영한다. 이 모델의 타당성은 유한요소해석 결과와 제안한 모델의 해석 결과를 비교하여 검증하였으며, 기존 등가골조 모델의 해석 결과가 비교에 포함되었다. 양방향으로 3스팬을 갖는 2층 건물을 비교 대상으로 삼았으며, 수정된 등가골조 모델의 수평변위 및 슬래브모멘트 결과는 유한요소해석 결과와 가장 근사한 결과를 나타냈다.

공항 콘크리트 포장의 피로모형 개발 연구 (Development of Fatigue Model for Airfield Concrete Pavement)

  • 권수안;양홍석;서영찬
    • 한국도로학회논문집
    • /
    • 제6권3호
    • /
    • pp.27-35
    • /
    • 2004
  • 공용중인 공항 콘크리트 포장의 잔존수명을 추정하는 방법은 크게 과거의 누적 교통량을 고려하는 방법, 이론적 해석을 통한 역학적 방법 등 두 가지로 구분할 수 있다. 단순히 과거의 누적교통량을 이용하는 방법은 노후포장의 잔존수명을 추정하기에는 현실과 많은 차이가 있기 때문에 최근들어 많은 연구자들은 역학적 해석에 의한 방법을 많이 채택하고 있다. 역학적 방법에서 피로식은 잔존수명산출의 핵심을 이루는 것으로서 그 역할은 매우 중요하다고 할 수 있다. 본 연구는 국내 공항 콘크리트 포장의 피로식을 개발하기 위한 연구이다. 이를 위하여 재령이 10년된 공항을 선정하여 30개의 코어시료를 채취하여 피로시험을 실시하였다. 피로실험은 쪼갬인장 모드를 이용하여 수행하였으며 응력비 산정을 위한 기준 강도도 코어시료의 쪼갬인장 강도를 통해 얻었다. 본 연구에서 얻은 피로식의 상관계수값은 0.5였으며, 이 모델을 검증하기 위해 다른 공항에서 채취한 시료를 이용하여 실험을 수행하였으며 실험결과는 본 연구에서 제시된 피로식에 크게 벗어나지 않는 것을 확인하였다. 본 피로식을 기존의 외국 연구와 비교한 결과 응력비가 80%이상인 구간에서는 피로수명이 약간 큰 것으로 나타났다.

  • PDF