DOI QR코드

DOI QR Code

An analytical solution for buckling failure of rock slopes based on elastoplastic slab theory

  • Zhihong Zhang (Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education, Beijing University of Technology) ;
  • Pengyu Wu (Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education, Beijing University of Technology) ;
  • Fuchu Dai (Key Laboratory of Urban Security and Disaster Engineering of the Ministry of Education, Beijing University of Technology) ;
  • Renjiang Li (China Three Gorges Corporation) ;
  • Xiaoming Zhao (China Three Gorges Corporation) ;
  • Shu Jiang (China Three Gorges Corporation)
  • Received : 2023.05.05
  • Accepted : 2024.03.02
  • Published : 2024.04.10

Abstract

Buckling failure is one of the classical types of catastrophic landslides developing on inclination-paralleled rock slopes, which is mainly governed by its self-weight, earthquake and ground water. However, nearly none of the existing studies fully consider the influence of slope self-weight, earthquake and ground water on the mechanical model of buckling failure. In this paper, based on energy equilibrium principle and elastoplastic slab theory, a thorough mechanical analysis on bucking slopes has been carried out. Furthermore, an analytical solution for slip bucking failure of rock slopes has been proposed, which fully considers the effect of slope self-weight, seismic force and hydrostatic pressure. Finally, the methodology is used to conduct comparative analysis with other analytical solutions for three practical buckling studies. The results show that the proposed approach is capable of providing a more accurate and reasonable evaluation for stability of rock slopes with potential buckling failure.

Keywords

Acknowledgement

This study is financially supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (No. 2019QZKK0905) and the Scientific Research Project of China Three Gorges Corporation (No. YMJ(BHT)/(21)036).

References

  1. Cavers, D.S. (1981), "Simple methods to analyze buckling of rock slopes", Rock Mech, 14(2), 87-104. https://doi.org/10.1007/BF01239857.
  2. Ding, G. and Hu, X. (2020), "Mechanical mechanism of buckling failure of Dabenliu consequent bedding rockslide", Bull. Geol. Sci. Technol., 39(2), 186-190. https://doi.org//CNKI:SUN:DZKQ.0.2020-02-022.
  3. Feng, J., Zhou, D. and Yang, T. (2010), "Stability analysis of consequent rock slopes using elastic-plastic plate theory", Chin. J. Geotech. Eng., 32(8), 1184-1188. https://doi.org/CNKI:SUN:YTGC.0.2010-08-009. 10-08-009
  4. Garzon, S.E.R. (2016), "Analytical solution for assessing continuum buckling in sedimentary rock slopes based on the tangent-modulus theory", Int. J. Rock Mech. Min. Sci., 90, 53-61. https://dx.doi.org/10.1016/j.ijrmms.2016.10.002.
  5. He, J., Qi, S., Zhan, Z., Guo, S., Li, C., Zheng, B., Huang, X., Zou, Y., Yang, G. and Liang, N. (2021), "Seismic response characteristics and deformation evolution of the bedding rock slope using a large-scale shaking table", Landslides, 18(8), 2835-2853. https://doi.org/10.1007/s10346-021-01682-w.
  6. Hu, X. and Cruden, D. (1993), "Buckling deformation in the Highwood Pass, Alberta, Canada", Can. Geotech. J., 30(2), 276-286. https://doi.org/10.1139/t93-023.
  7. Khalfi, Y., Sofiane, G. and Bouchikhi, A.S. (2020), "A novel refined shear deformation theory for the buckling analysis of thick isotropic and orthotropic plates on two-parameter pasternak's foundations", J Fail. Anal. Preven., 20, 75-84. https://doi.org/10.1007/s11668-019-00713-y.
  8. Li, X., Chen, H., Sun, Y., Zhou, R. and Wang, L. (2018), "Study on the splitting failure of the surrounding rock of underground caverns", Geomech. Eng., 14(5), 499-507. https://doi.org/10.12989/gae.2018.14.5.499.
  9. Li, J. (2019), "Layer slabbing effect on deformation and failure in consequent rock slope", Ph.D. Dissertation, Lanzhou University, Lanzhou, China.
  10. Li, Y., Feng, X., Yao, A., Li, S. and Guo, M. (2021), "A massive ancient river-damming landslide triggered by buckling failure in the upper Jinsha River, SE Tibetan Plateau", Bull. Eng. Geol. Environ., 2, 1-13. https://doi.org/10.1007/s10064-021-02293-4.
  11. Liao, Y. (2002), "Analysis & study on stability of NO.2 landslide for Lijiaxia hydropower station on yellow river", Ph.D. Dissertation, Chengdu University of Technology, Chengdu, China.
  12. Liu, C. and Zhu, Y. (2014), "Buckling failure model of inclinationparalleled rock slopes", J. Geol. Hazards Environ. Preserv, 25(1), 82-86. https://doi.org//10.3969/j.issn.1006-4362.2014.01.015.
  13. Liu, H., Wang, G. and Huang, F. (2016), "Methods to analyze flexural buckling of the consequent slabbed rock slope under top loading", Math. Probl. Eng., 1-8. https://doi.org//10.1155/2016/3402547.
  14. Liu, X. and Zhou, D. (2002), "Stability analysis of layered dip rocky slopes with elastic plane theory", Rock Soil Mech, 2, 162-165. https://doi.org/10.16285/j.rsm.2002.02.007.
  15. Liu, J. (1997), "Calculation method for the buckling problem of inclination-paralleled slopes", Hydrogeol Eng Geol, 6, 37-41. https://doi:10.16030/j.cnki.issn.1000-3665.1997.06.011.
  16. Pan, R., Li, B. and Jiang, J. (1990), "Research on the buckling failure of the slab-rent structure rock bedding slopes", J Southwest Jiaotong Univ., 3, 82-88.
  17. Qi, S., Lan, H. and Dong, J. (2014), "An analytical solution to slip buckling slope failure triggered by earthquake", Eng. Geol., 194, 4-11. https://doi.org/10.1016/j.enggeo.2014.06.004.
  18. Radbruch-Hall, D.H. (1978), "Gravitational creep of rock masses on slopes", Developments in Geotech Eng, 14:607-657. https://doi.org/10.1016/B978-0-444-41507-3.50025-8.
  19. Ren, G., Li, S., Nie, D. and Zuo, S. (1998), "The physical simulation and mechanical analysis on landslide's formation mechanism on consequent slope", Mountain. Res., 16(3), 3-5. https://doi.org/10.16089/j.cnki.1008-2786.1998.03.005.
  20. Wang, F., Cheng, Q., Highland, L., Miyajima, M., Wang, H. and Yan, C. (2009), "Preliminary investigation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province, China", Landslides, 6, 47-54. https://doi.org/10.1007/s10346-009-0141-z.
  21. Wang, G., Huang, R., Lourenco, S.D.N. and Kamai, T. (2014), "A large landslide triggered by the 2008 Wenchuan (M8.0) earthquake in Donghekou area: phenomena and mechanisms", Eng. Geol., 182, 148-157. https://doi.org/10.1016/j.enggeo.2014.07.013.
  22. Wang, Q., Zhang, R. and Zheng, H. (2022), "Buckling failure analysis and numerical manifold method simulation for Malvern Hills slope", Rock Soil Mech., 43(7), 1951-1960. https://doi.org/10.16285/j.rsm.2021.1674.
  23. Xiao, H., Hou, K. and Du, J. (2014), "The study on buckling failure of different layer of layer rock mass slope", Sci. Technol. Eng., 14(2), 1671-1815. https://doi.org/10.3969/j.issn.1671-1815.2014.02.051.
  24. Zhang, M., Yin, Y. and McSaveney, M. (2016), "Dynamics of the 2008 earthquake-triggered Wenjiagou Creek rock avalanche, Qingping, Sichuan, China", Eng. Geol., 200, 75-87. https://doi.org/10.1016/j.enggeo.2015.12.008.
  25. Zhang, Q., Hu, J., Gao, Y., Du, Y., Li, L., Liu, H. and Sun, S. (2022), "Analysis of the buckling failure of bedding slope based on monitoring data-a model test study", Geomech. Eng., 28(4), 335-346. https://doi.org/10.12989/gae.2022.28.4.335.
  26. Zhang, Y., Nian, T., Guo, X., Chen, G. and Zheng, L. (2019), "Modelling the flexural buckling failure of stratified rock slopes based on the multilayer beam model", J. Mountain Sci., 16, 1170-1183. https://doi.org/10.1007/s11629-018-5007-1.
  27. Zhang, Z., Guo, Y., Dai, F., Zhao, S. and Yao, A. (2022), "Analysis of buckling failure process for the Xiaguiwa landslide in southeastern Tibetan Plateau", Q J Eng Geol Hydrogeol, 53(3), 37-47. https://doi.org/10.1144/qjegh2021-075.
  28. Zhao, S., Chigira M. and Wu, X. (2018), "Buckling deformations at the 2017 Xinmo landslide site and nearby slopes, Maoxian, Sichuan, China", Eng. Geol., 246, 187-197. https://doi.org/10.1016/j.enggeo.2018.09.033.