• Title/Summary/Keyword: SKP1

Search Result 32, Processing Time 0.023 seconds

The Ubiquitin-Proteasome System and F-box Proteins in Pathogenic Fungi

  • Liu, Tong-Bao;Xue, Chaoyang
    • Mycobiology
    • /
    • v.39 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • The ubiquitin-proteasome system is one of the major protein turnover mechanisms that plays important roles in the regulation of a variety of cellular functions. It is composed of E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), and E3 ubiquitin ligases that transfer ubiquitin to the substrates that are subjected to degradation in the 26S proteasome. The Skp1, Cullin, F-box protein (SCF) E3 ligases are the largest E3 gene family, in which the F-box protein is the key component to determine substrate specificity. Although the SCF E3 ligase and its F-box proteins have been extensively studied in the model yeast Saccharomyces cerevisiae, only limited studies have been reported on the role of F-box proteins in other fungi. Recently, a number of studies revealed that F-box proteins are required for fungal pathogenicity. In this communication, we review the current understanding of F-box proteins in pathogenic fungi.

MANDIBULAR BONE REGENERATION USING AUTOGENOUS SKIN-DERIVED PRECURSOR CELLS WITH A MIXED DEMINERALIZED BONE AND FIBRIN GLUE SCAFFOLD IN MINIATURE PIGS (미니돼지에서 자가 피부유래 전구세포와 탈회골 및 피브린 스케폴드를 이용한 하악골 골결손부의 골재생에 대한 연구)

  • Byun, June-Ho;Choi, Mun-Jeong;Choi, Young-Jin;Shim, Kyoung-Mok;Kim, Uk-Kyu;Kim, Jong-Ryoul;Park, Bong-Wook
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.3
    • /
    • pp.198-206
    • /
    • 2009
  • Purpose: The aims of this study were to assess the in vitro co-culturing pattern of isolated skin-derived precursor cells (SKPs) with a mixed demineralized bone (DMB) and fibrin glue scaffold and to evaluate in vivo osteogenesis after transplantation of autogenous SKPs with a these mixed scaffold in the animal's mandibular defects. Materials and Methods: We isolated SKPs from the ears of adult 4 miniature pigs. The isolated SKPs were co-cultured with a mixed DMB and fibrin glue scaffold in a non-osteogenic medium for 1, 2, and 4 weeks. Histological characteristics of in vitro co-cultured cells and scaffold were evaluated. $1{\times}10^7\;cells/100\;{\mu}l$ of autogenous porcine SKPs were grafted into the mandibular defects with a DMB and fibrin glue scaffold. In the control sites, only a scaffold was grafted, without SKPs. After two animals each were euthanized at 2 and 4 weeks after grafting, the in vivo osteogenesis was evaluated with histolomorphometric and osteocalcin immunohistochemical studies. Results: Homogeneously shaped skin-derived cells were isolated from porcine ear skin after 3 or 4 weeks of primary culture. In vitro osteogenic differentiation of SKPs was observed after co-culturing with a DMB and fibrin glue scaffold in a non-osteogenic medium. Von Kossa-positive bone minerals were also noted in the co-cultured medium at 4 weeks. As the culture time progressed, the number of observable cells increased. Trabecular new bone formation and osteocalcin expression were more pronounced in the SKP-grafted group compared to the control group. Conclusion: These findings suggest that autogenous SKP grafting with a DMB and fibrin glue scaffold can serve as a useful alternative to bone grafting technique.

Correlation Between the Microclimate and the Crown of Platanus orientalis and Ulmus davidiana (버즘나무(Platanus orientalis)와 느릅나무(Ulmus davidiana)의 수관부와 미기후간의 상호 관계)

  • Lee, Jae-yoon;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.793-799
    • /
    • 2016
  • This study examined Platanus orientalis and Ulmus davidiana planted in downtown parks to identify the correlations among microclimatic factors such as temperature in the crown, air flow, and wind speed. For the field survey, measurements were taken at 1 hour intervals from 09:00 am to 06:00 pm in August. For the measurement of microclimatic factors, data on temperature, light intensity, air flow, and wind speed were collected using a quantum sensor (PAR Quantum Sensor SKP215), a precision thermometer (Pt1000-Sensor), and a combination anemometer (1467 G4 & HG4). The results of the analysis demonstrated that both Platanus orientalis and Ulmus davidiana, showed a greater cooling effect inside the crown as compared with the outside temperature. The cooling effect inside the crown was more evident with air flow and wind speed factors. With relation to wind, the inner temperature of the crown of Platanus orientalis decreased due to air flow while that of Ulmus davidiana decreased due to wind speed. With no wind, the average variation in temperature inside the crown was $-0.9^{\circ}C$ for Ulmus davidiana and $-0.958^{\circ}C$ for Platanus orientalis, indicating that Platanus orientalis was relatively more effective in lowering the temperature of the planting space than Ulmus davidiana. This study is significant because it shows that different tree species have different effects on the microclimate and that factors affecting the formation of the microclimate of trees may vary with species. Further studies on species other than broad leaf trees, such as evergreen trees and shrubs, are required in order to plan the distribution of landscaping trees that are effective in regulating the microclimate within urban green spaces.

Biological Characterization of the Omp1-like Protein from Actinobacillus actinomycetemcomitans

  • Ha, Jung-Hye;Jeong, Mi-Suk;Jo, Wol-Soon;Jeong, Min-Ho;Jang, Se-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.275-280
    • /
    • 2010
  • Actinobacillus actinomycetemcomitans is a gram-negative, nonmotile coccobacillus bacterium that is associated with several human diseases, including endocarditis, meningitis, osteomyelitis, subcutaneous abscesses and periodontal diseases. A full-length Omp1-like protein gene from A. actinomycetemcomitans was cloned into a pQE30 vector and overexpressed in Escherichia coli BL21(DE3) cells. The protein revealed sequence homologies to Seventeen kilodalton proteins (Skp) from Pasteurella multocida and E. coli that have been characterized as periplasmic chaperones. This soluble Omp1-like protein was successfully purified to homogeneity for further folding and functional studies. The purity, identity, and conformation of the protein were determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis, matrix-assisted laser desorption ionization mass spectrometry, circular dichroism, fluorescence spectroscopic, and differential scanning calorimetric studies. We showed that the protein formed an oligomer larger than a tetramer. We found, further, that it is comprised of mostly $\alpha$-helices and boasts high thermal stability.

Implementation and Feasibility Test of the Mixed Reality Service Platform for Application of Architectural Field (건축분야 활용을 위한 MR콘텐츠 서비스플랫폼 구현)

  • Ahn, Kil-Jae;Ko, Dae-Sik
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.1
    • /
    • pp.149-156
    • /
    • 2019
  • Mixed reality technology (MR) has become one of the fourth industrial revolution element technologies. MR technology has been widely applied not only as a digital contents industry but also in the fields of architecture, tourism, medical field, and education. In this paper, we propose a collaborative service platform for architectural applications that inter-operate with heterogeneous devices such as MR device, PC and mobile, and develop prototype system and verify it. As a result, the 3D model using the skp extension, which is mainly used in architecture design office, was created by using developed prototype system and generate the MR contents for the hololens, which is the MR device, and the conversion time and normal operation were confirmed.

Stemness and Proliferation of Murine Skin-Derived Precursor Cells under Hypoxic Environment

  • Kim, Hyewon;Park, Sangkyu;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • v.41 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • Skin-derived precursors (SKPs) have potential to differentiate to various cell types including osteoblasts, adipocytes and neurons. SKPs are a candidate for cell-based therapy since they are easily accessible and have multipotency. Most mammalian cells are exposed to a low oxygen environment with 1 to 5% $O_2$ concentration in vivo, while 21% $O_2$ concentration is common in in vitro culture. The difference between in vitro and in vivo $O_2$ concentration may affect to the behavior of cultured cells. In this report, we investigated the effect of hypoxic condition on stemness and proliferation of SKPs. The results indicated that SKPs exposed to hypoxic condition for 5 days showed no change in proliferation. In terms of mRNA expression, hypoxia maintained expression of stemness markers; whereas, oncogenes, such as Klf4 and c-Myc, were downregulated, and the expression of Nestin, related to cancer migration, was also downregulated. Thus, SKPs cultured in hypoxia may reduce the risk of cancer in SKP cell-based therapy.

Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1

  • Feng, Mingxiao;Kim, Jae-Yean
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.829-835
    • /
    • 2015
  • It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) ($SCF^{TIR1/AFB}$) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional $SCF^{TIR1/AFB}$ auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.

A novel F-box protein with leucine-rich repeats affects defecation frequency and daumone response in Caenorhabditis elegans

  • Kim, Sung-Moon;Jang, Sang-Ho;Son, Na-Rae;Han, Ching-Tack;Min, Kwan-Sik;Lee, Hak-Kyo;Hwang, Sue-Yun
    • Animal cells and systems
    • /
    • v.16 no.4
    • /
    • pp.280-288
    • /
    • 2012
  • Targeted degradation of proteins through ubiquitin-mediated proteolysis is an important control mechanism in various cellular processes. The process of ubiquitin conjugation is achieved by three enzyme complexes, among which the ubiquitin ligase complex (E3) is in charge of substrate specificity. The SCF (SKP1-CUL1-F-box) family portrays the largest and the most characterized member of the E3 ligases. For each SCF complex, the ubiquitination target is recognized by the F-box protein subunit, which interacts with the substrate through a unique C-terminal domain. We have characterized a novel F-box protein CFL-1 that represents a single LRR-type F-box (FBXL) in the Caenorhabditis elegans genome. CFL-1 is highly homologous to FBXL20 and FBXL2 of mammals, which are known to regulate synaptic vesicle release and cell cycle, respectively. A green fluorescence protein (GFP)-reporter gene fused to the cfl-1 promoter showed restricted expression around the amphid and the anus. Modulation of CFL-1 activity by RNAi affected the time interval between defecations. RNAi-treated worms also exhibited reduced tendency to form dauer when exposed to daumone. The potential involvement of CFL-1 in the control of defecation and pheromone response adds to the ever expanding list of cellular processes controlled by ubiquitin-mediated proteolysis in C. elegans. We suggest that CFL-1, as a single LRR-type F-box protein in C. elegans, may portray a prototype gene exerting diverse functions that are allocated among multiple FBXLs in higher organisms.

Effects of Rhus verniciflua Stokes Extract on Cell Viability, Cell Cycle Progression and Apoptosis of AGS Cell (건칠(乾漆)이 위암세포의 활성, 세포사멸 및 세포주기관련 유전자 발현에 미치는 영향)

  • An, Jin-Yeong;Ko, Seong-Gyu;Ko, Heung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.701-709
    • /
    • 2006
  • The Rhus verniciflua Stokes (乾漆-RVS) has been used in traditional East Asia medicine for the therapy of gastritis, stomach cancer, although the mechanism for the biological activity is unclear. In the present study aims to investigate RVS extract contributes to growth inhibitory effect and it's the molecular mechanism on the human gastric cancer cells. AGS (gastric cancer cells) and RIEI (normal cells) were treated to different concentrations and periods of RVS extract $(10{\;}{\sim{{\;}100{\;}ug/mil)$. Growth inhibitory effect was analyzed by measuring FACS study and MTS assay. Cell cycle inhibition was confirmed by measuring CDK2 kinase activity by immunoprecipitation and kinase assay. And apoptosis was confirmed by surveying caspase cascades activation using a pan caspase inhibitor Exposure to RVS extract (50 ug/mll) resulted in a synergistic inhibitory effect on cell growth in AGS cells. Growth inhibition was related with the inhibition of proliferation and induction of apoptosis. The extract induces Gl -cell cycle arrest through the regulation of cyclins, the induction of p27kip1, and the decrease CDK2 kinase activity. And upregulated p27kip1 level is caused by protein stability increment by the reduction of S-phase kinase-associated protein 2 (Skp2), a key molecule related with p27kip1 ubiquitination and degradation, and do novo protein synthesis. Besides, 乾漆 extract induces apoptosis through the expression of Bax, poly(ADP-ribose) polymerase (PARP) and activation of caspase-3. RVS extract induces Gl -cell cycle arrest via accumulation of p27kip1 and apoptosis in human gastric cancer cells but not in normal cells, therefore we suggest that the extract can be used as a novel class of anti-cancer drugs.

Ralstonia solanacearum Type III Effectors with Predicted Nuclear Localization Signal Localize to Various Cell Compartments and Modulate Immune Responses in Nicotiana spp.

  • Jeon, Hyelim;Kim, Wanhui;Kim, Boyoung;Lee, Sookyeong;Jayaraman, Jay;Jung, Gayoung;Choi, Sera;Sohn, Kee Hoon;Segonzac, Cecile
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.43-53
    • /
    • 2020
  • Ralstonia solanacearum (Rso) is a causal agent of bacterial wilt in Solanaceae crops worldwide including Republic of Korea. Rso virulence predominantly relies on type III secreted effectors (T3Es). However, only a handful of Rso T3Es have been characterized. In this study, we investigated subcellular localization of and manipulation of plant immunity by 8 Rso T3Es predicted to harbor a nuclear localization signal (NLS). While 2 of these T3Es elicited cell death in both Nicotiana benthamiana and N. tabacum, only one was dependent on suppressor of G2 allele of skp1 (SGT1), a molecular chaperone of nucleotide-binding and leucine-rich repeat immune receptors. We also identified T3Es that differentially regulate flg22-induced reactive oxygen species production and gene expression. Interestingly, several of the NLS-containing T3Es translationally fused with yellow fluorescent protein accumulated in subcellular compartments other than the cell nucleus. Our findings bring new clues to decipher Rso T3E function in planta.