DOI QR코드

DOI QR Code

Ralstonia solanacearum Type III Effectors with Predicted Nuclear Localization Signal Localize to Various Cell Compartments and Modulate Immune Responses in Nicotiana spp.

  • Jeon, Hyelim (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Wanhui (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Kim, Boyoung (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Sookyeong (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Jayaraman, Jay (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Jung, Gayoung (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Choi, Sera (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Sohn, Kee Hoon (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Segonzac, Cecile (Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2019.08.22
  • Accepted : 2019.11.19
  • Published : 2020.02.01

Abstract

Ralstonia solanacearum (Rso) is a causal agent of bacterial wilt in Solanaceae crops worldwide including Republic of Korea. Rso virulence predominantly relies on type III secreted effectors (T3Es). However, only a handful of Rso T3Es have been characterized. In this study, we investigated subcellular localization of and manipulation of plant immunity by 8 Rso T3Es predicted to harbor a nuclear localization signal (NLS). While 2 of these T3Es elicited cell death in both Nicotiana benthamiana and N. tabacum, only one was dependent on suppressor of G2 allele of skp1 (SGT1), a molecular chaperone of nucleotide-binding and leucine-rich repeat immune receptors. We also identified T3Es that differentially regulate flg22-induced reactive oxygen species production and gene expression. Interestingly, several of the NLS-containing T3Es translationally fused with yellow fluorescent protein accumulated in subcellular compartments other than the cell nucleus. Our findings bring new clues to decipher Rso T3E function in planta.

Keywords

References

  1. Alfano, J. R. and Collmer, A. 2004. Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42:385-414. https://doi.org/10.1146/annurev.phyto.42.040103.110731
  2. Buttner, D. 2016. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol. Rev. 40:894-937. https://doi.org/10.1093/femsre/fuw026
  3. Choi, S., Jayaraman, J., Segonzac, C., Park, H.-J., Park, H., Han, S.-W. and Sohn, K. H. 2017. Pseudomonas syringae pv. actinidiae type III effectors localized at multiple cellular compartments activate or suppress innate immune responses in Nicotiana benthamiana. Front. Plant Sci. 8:2157. https://doi.org/10.3389/fpls.2017.02157
  4. Couto, D. and Zipfel, C. 2016. Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16:537-552. https://doi.org/10.1038/nri.2016.77
  5. de Lange, O., Schreiber, T., Schandry, N., Radeck, J., Braun, K. H., Koszinowski, J., Heuer, H., Straus, A. and Lahaye, T. 2013. Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol. 199:773-786. https://doi.org/10.1111/nph.12324
  6. Deslandes, L. and Genin, S. 2014. Opening the Ralstonia solanacearum type III effector tool box: insights into host cell subversion mechanisms. Curr. Opin. Plant Biol. 20:110-117. https://doi.org/10.1016/j.pbi.2014.05.002
  7. Deslandes, L., Olivier, J., Peeters, N., Feng, D. X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S. and Marco, Y. 2003. Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc. Natl. Acad. Sci. U. S. A. 100:8024-8029. https://doi.org/10.1073/pnas.1230660100
  8. Deslandes, L. and Rivas, S. 2011. The plant cell nucleus: a true arena for the fight between plants and pathogens. Plant Signal. Behav. 6:42-48. https://doi.org/10.4161/psb.6.1.13978
  9. Engler, C. and Marillonnet, S. 2014. Golden Gate cloning. In: DNA cloning and assembly methods, eds. by S. Valla and R. Lale, pp. 119-131. Humana Press, Totowa, NJ, USA.
  10. Fujiwara, S., Kawazoe, T., Ohnishi, K., Kitagawa, T., Popa, C., Valls, M., Genin, S., Nakamura, K., Kuramitsu, Y., Tanaka, N. and Tabuchi, M. 2016. RipAY, a plant pathogen effector protein, exhibits robust ${\gamma}$-glutamyl cyclotransferase activity when stimulated by eukaryotic thioredoxins. J. Biol. Chem. 291:6813-6830. https://doi.org/10.1074/jbc.M115.678953
  11. Genin, S. and Denny, T. P. 2012. Pathogenomics of the Ralstonia solanacearum species complex. Annu. Rev. Phytopathol. 50:67-89. https://doi.org/10.1146/annurev-phyto-081211-173000
  12. Gimenez-Ibanez, S., Hann, D. R., Chang, J. H., Segonzac, C., Boller, T. and Rathjen, J. P. 2018. Differential suppression of Nicotiana benthamiana innate immune responses by transiently expressed Pseudomonas syringae type III effectors. Front. Plant Sci. 9:688. https://doi.org/10.3389/fpls.2018.00688
  13. Gueneron, M., Timmers, A. C., Boucher, C. and Arlat, M. 2000. Two novel proteins, PopB, which has functional nuclear localization signals, and PopC, which has a large leucine-rich repeat domain, are secreted through the hrp-secretion apparatus of Ralstonia solanacearum. Mol. Microbiol. 36:261-277. https://doi.org/10.1046/j.1365-2958.2000.01870.x
  14. Guo, Y., Cordes, K. R., Farese, R. V. Jr. and Walther, T. C. 2009. Lipid droplets at a glance. J. Cell Sci. 122:749-752. https://doi.org/10.1242/jcs.037630
  15. Hann, D. R. and Rathjen, J. P. 2007. Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant J. 49:607-618. https://doi.org/10.1111/j.1365-313X.2006.02981.x
  16. Heese, A., Hann, D. R., Gimenez-Ibanez, S., Jones, A. M., He, K., Li, J., Schroeder, J. I., Peck, S. C. and Rathjen, J. P. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. U. S. A. 104:12217-12222. https://doi.org/10.1073/pnas.0705306104
  17. Hicks, S. W. and Galan, J. E. 2013. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors. Nat. Rev. Microbiol. 11:316-326. https://doi.org/10.1038/nrmicro3009
  18. Hogenhout, S. A., Van der Hoorn, R. A., Terauchi, R. and Kamoun, S. 2009. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant-Microbe Interact. 22:115-122. https://doi.org/10.1094/MPMI-22-2-0115
  19. Jacquier, N., Mishra, S., Choudhary, V. and Schneiter, R. 2013. Expression of oleosin and perilipins in yeast promotes formation of lipid droplets from the endoplasmic reticulum. J. Cell Sci. 126:5198-5209. https://doi.org/10.1242/jcs.131896
  20. Jayaraman, J., Choi, S., Prokchorchik, M., Choi, D. S., Spiandore, A., Rikkerink, E. H., Templeton, M. D., Segonzac, C. and Sohn, K. H. 2017. A bacterial acetyltransferase triggers immunity in Arabidopsis thaliana independent of hypersensitive response. Sci. Rep. 7:3557. https://doi.org/10.1038/s41598-017-03704-x
  21. Jones, J. D. G. and Dangl, J. L. 2006. The plant immune system. Nature 444:323-329. https://doi.org/10.1038/nature05286
  22. Kadota, Y., Shirasu, K. and Guerois, R. 2010. NLR sensors meet at the SGT1-HSP90 crossroad. Trends Biochem. Sci. 35:199-207. https://doi.org/10.1016/j.tibs.2009.12.005
  23. Khan, M., Seto, D., Subramaniam, R. and Desveaux, D. 2018. Oh, the places they'll go! A survey of phytopathogen effectors and their host targets. Plant J. 93:651-663. https://doi.org/10.1111/tpj.13780
  24. Kosugi, S., Hasebe, M., Tomita, M. and Yanagawa, H. 2009. Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc. Natl. Acad. Sci. U. S. A. 106:10171-10176. https://doi.org/10.1073/pnas.0900604106
  25. Lacomme, C. and Santa Cruz, S. 1999. Bax-induced cell death in tobacco is similar to the hypersensitive response. Proc. Natl. Acad. Sci. U. S. A. 96:7956-7961. https://doi.org/10.1073/pnas.96.14.7956
  26. Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Tremousaygue, D., Kraut, A., Zhou, B., Levaillant, M., Adachi, H., Yoshioka, H., Raffaele, S., Berthome, R., Coute, Y., Parker, J. E. and Deslandes, L. 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription factors to immunity. Cell 161:1074-1088. https://doi.org/10.1016/j.cell.2015.04.025
  27. Li, L., Atef, A., Piatek, A., Ali, Z., Piatek, M., Aouida, M., Sharakuu, A., Mahjoub, A., Wang, G., Khan, S., Fedoroff, N. V., Zhu, J.-K. and Mahfouz, M. M. 2013. Characterization and DNA-binding specificities of Ralstonia TAL-like effectors. Mol. Plant 6:1318-1330. https://doi.org/10.1093/mp/sst006
  28. Macho, A. P. 2016. Subversion of plant cellular functions by bacterial type-III effectors: beyond suppression of immunity. New Phytol. 210:51-57. https://doi.org/10.1111/nph.13605
  29. Macho, A. P. and Zipfel, C. 2015. Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Curr. Opin. Microbiol. 23:14-22. https://doi.org/10.1016/j.mib.2014.10.009
  30. Marois, E., Van den Ackerveken, G. and Bonas, U. 2002. The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol. Plant-Microbe Interact. 15:637-646. https://doi.org/10.1094/MPMI.2002.15.7.637
  31. Motion, G. B., Amaro, T. M., Kulagina, N. and Huitema, E. 2015. Nuclear processes associated with plant immunity and pathogen susceptibility. Brief. Funct. Genomics 14:243-252. https://doi.org/10.1093/bfgp/elv013
  32. Mukaihara, T., Hatanaka, T., Nakano, M. and Oda, K. 2016. Ralstonia solanacearum type III effector RipAY is a glutathionedegrading enzyme that is activated by plant cytosolic thioredoxins and suppresses plant immunity. mBio 7:e00359-16.
  33. Nakano, M., Oda, K. and Mukaihara, T. 2017. Ralstonia solanacearum novel E3 ubiquitin ligase (NEL) effectors RipAW and RipAR suppress pattern-triggered immunity in plants. Microbiology 163:992-1002. https://doi.org/10.1099/mic.0.000495
  34. Navarro, L., Zipfel, C., Rowland, O., Keller, I., Robatzek, S., Boller, T. and Jones, J. D. G. 2004. The transcriptional innate immune response to flg22. Interplay and overlap with Avr gene-dependent defense responses and bacterial pathogenesis. Plant Physiol. 135:1113-1128. https://doi.org/10.1104/pp.103.036749
  35. Newman, T. E., Lee, J., Williams, S. J., Choi, S., Halane, M. K., Zhou, J., Solomon, P., Kobe, B., Jones, J. D. G., Segonzac, C. and Sohn, K. H. 2019. Autoimmunity and effector recognition in Arabidopsis thaliana can be uncoupled by mutations in the RRS1-R immune receptor. New Phytol. 222:954-965. https://doi.org/10.1111/nph.15617
  36. Nguyen Ba, A. N., Pogoutse, A., Provart, N. and Moses, A. M. 2009. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinformatics 10:202. https://doi.org/10.1186/1471-2105-10-202
  37. Nimchuk, Z. L., Fisher, E. J., Desveaux, D., Chang, J. H. and Dangl, J. L. 2007. The HopX (AvrPphE) family of Pseudomonas syringae type III effectors require a catalytic triad and a novel N-terminal domain for function. Mol. Plant-Microbe Interact. 20:346-357. https://doi.org/10.1094/MPMI-20-4-0346
  38. Park, E., Lee, H.-Y., Woo, J., Choi, D. and Dinesh-Kumar, S. P. 2017. Spatiotemporal monitoring of Pseudomonas syringae effectors via type iii secretion using split fluorescent protein fragments. Plant Cell 29:1571-1584. https://doi.org/10.1105/tpc.17.00047
  39. Peart, J. R., Cook, G., Feys, B. J., Parker, J. E. and Baulcombe, D. C. 2002. An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J. 29:569-579. https://doi.org/10.1046/j.1365-313X.2002.029005569.x
  40. Peeters, N., Carrere, S., Anisimova, M., Plener, L., Cazale, A.-C. and Genin, S. 2013a. Repertoire, unified nomenclature and evolution of the Type III effector gene set in the Ralstonia solanacearum species complex. BMC Genomics 14:859. https://doi.org/10.1186/1471-2164-14-859
  41. Peeters, N., Guidot, A., Vailleau, F. and Valls, M. 2013b. Ralstonia solanacearum, a widespread bacterial plant pathogen in the post-genomic era. Mol. Plant Pathol. 14:651-662. https://doi.org/10.1111/mpp.12038
  42. Poueymiro, M., Cunnac, S., Barberis, P., Deslandes, L., Peeters, N., Cazale-Noel, A.-C., Boucher, C. and Genin, S. 2009. Two type III secretion system effectors from Ralstonia solanacearum GMI1000 determine host-range specificity on tobacco. Mol. Plant-Microbe Interact. 22:538-550. https://doi.org/10.1094/MPMI-22-5-0538
  43. Priller, J. P. R., Reid, S., Konein, P., Dietrich, P. and Sonnewald, S. 2016. The Xanthomonas campestris pv. vesicatoria type-3 effector XopB inhibits plant defence responses by interfering with ROS production. PLoS ONE 11:e0159107. https://doi.org/10.1371/journal.pone.0159107
  44. Pyc, M., Cai, Y., Gidda, S. K., Yurchenko, O., Park, S., Kretzschmar, F. K., Ischebeck, T., Valerius, O., Braus, G. H., Chapman, K. D., Dyer, J. M. and Mullen, R. T. 2017. Arabidopsis lipid droplet-associated protein (LDAP) - interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds. Plant J. 92:1182-1201. https://doi.org/10.1111/tpj.13754
  45. Qi, J., Wang, J., Gong, Z. and Zhou, J.-M. 2017. Apoplastic ROS signaling in plant immunity. Curr. Opin. Plant Biol. 38:92-100. https://doi.org/10.1016/j.pbi.2017.04.022
  46. Qiu, W., Park, J.-W. and Scholthof, H. B. 2002. Tombusvirus p19-mediated suppression of virus-induced gene silencing is controlled by genetic and dosage features that influence pathogenicity. Mol. Plant-Microbe Interact. 15:269-280. https://doi.org/10.1094/MPMI.2002.15.3.269
  47. Sang, Y. and Macho, A. P. 2017. Analysis of PAMP-triggered ROS burst in plant immunity. In: Plant pattern recognition receptors, eds. by L. Shan and P. He, pp. 143-153. Humana Press, New York, NY, USA.
  48. Sang, Y., Wang, Y., Ni, H., Cazalé, A.-C., She, Y.-M., Peeters, N. and Macho, A. P. 2018. The Ralstonia solanacearum type III effector RipAY targets plant redox regulators to suppress immune responses. Mol. Plant Pathol. 19:129-142. https://doi.org/10.1111/mpp.12504
  49. Sarris, P. F., Duxbury, Z., Huh, S. U., Ma, Y., Segonzac, C., Sklenar, J., Derbyshire, P., Cevik, V., Rallapalli, G., Saucet, S. B., Wirthmueller, L., Menke, F. L. H., Sohn, K. H. and Jones, J. D. G. 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161:1089-1100. https://doi.org/10.1016/j.cell.2015.04.024
  50. Schandry, N., de Lange, O., Prior, P. and Lahaye, T. 2016. TALElike effectors are an ancestral feature of the Ralstonia solanacearum species complex and converge in DNA targeting specificity. Front. Plant Sci. 7:1225.
  51. Segonzac, C., Feike, D., Gimenez-Ibanez, S., Hann, D. R., Zipfel, C. and Rathjen, J. P. 2011. Hierarchy and roles of pathogenassociated molecular pattern-induced responses in Nicotiana benthamiana. Plant Physiol. 156:687-699. https://doi.org/10.1104/pp.110.171249
  52. Sohn, K. H., Segonzac, C., Rallapalli, G., Sarris, P. F., Woo, J. Y., Williams, S. J., Newman, T. E., Paek, K. H., Kobe, B. and Jones, J. D. G. 2014. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana. PLoS Genet. 10:e1004655. https://doi.org/10.1371/journal.pgen.1004655
  53. Sole, M., Popa, C., Mith, O., Sohn, K. H., Jones, J. D. G., Deslandes, L. and Valls, M. 2012. The awr gene family encodes a novel class of Ralstonia solanacearum type III effectors displaying virulence and avirulence activities. Mol. Plant-Microbe Interact. 25:941-953. https://doi.org/10.1094/MPMI-12-11-0321
  54. Strasser, R. 2018. Protein quality control in the endoplasmic reticulum of plants. Annu. Rev. Plant Biol. 69:147-172. https://doi.org/10.1146/annurev-arplant-042817-040331
  55. Sun, Y., Li, P., Shen, D., Wei, Q., He, J. and Lu, Y. 2019. The Ralstonia solanacearum effector RipN suppresses plant PAMPtriggered immunity, localizes to the endoplasmic reticulum and nucleus, and alters the NADH/NAD+ ratio in Arabidopsis. Mol. Plant Pathol. 20:533-546. https://doi.org/10.1111/mpp.12773
  56. Wang, R. and Brattain, M. G. 2007. The maximal size of protein to diffuse through the nuclear pore is larger than 60kDa. FEBS Lett. 581:3164-3170. https://doi.org/10.1016/j.febslet.2007.05.082
  57. Wei, Y., Sang, Y. and Macho, A. P. 2017. The Ralstonia solanacearum type III effector RipAY is phosphorylated in plant cells to modulate its enzymatic activity. Front. Plant Sci. 8:1899. https://doi.org/10.3389/fpls.2017.01899
  58. Zhao, C., Wang, H., Lu, Y., Hu, J., Qu, L., Li, Z., Wang, D., He, Y., Valls, M., Coll, N. S., Chen, Q. and Lu, H. 2019. Deep sequencing reveals early reprogramming of Arabidopsis root transcriptomes upon Ralstonia solanacearum infection. Mol. Plant-Microbe Interact. 32:813-827. https://doi.org/10.1094/MPMI-10-18-0268-R
  59. Zheng, X., Li, X., Wang, B., Cheng, D., Li, Y., Li, W., Huang, M., Tan, X., Zhao, G., Song, B., Macho, A. P., Chen, H. and Xie, C. 2019. A systematic screen of conserved Ralstonia solanacearum effectors reveals the role of RipAB, a nuclearlocalized effector that suppresses immune responses in potato. Mol. Plant Pathol. 20:547-561. https://doi.org/10.1111/mpp.12774
  60. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D. G., Felix, G. and Boller, T. 2004. Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428:764-767. https://doi.org/10.1038/nature02485