• Title/Summary/Keyword: SISO

Search Result 225, Processing Time 0.022 seconds

Consideration to the Stability of FLC using The Circle Criterion (Circle Criterion을 이용한 FLC의 안정도에 대한 고찰)

  • Lee, Kyoung-Woong;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.525-529
    • /
    • 2009
  • Most of FLC received input data from error e and change-of-error e' with no relation with system complexity. Basic scheme follows typical PD and PI or PID Controller and that has been developed through fixed ME In this paper, We studied the relationship between MF and system response and system response through changing Fuzzy variable of consequence MF and propose the simple FLC using this relationship. The response of FLC is changed according to the width of Fuzzy variable of consequence MF. As changing the Fuzzy variable of consequence MF shows various nonlinear characteristic, we studied the relation between response and MF using analytical method. We designed the effective FLC using three-variable MF and nine rules and took simulation for verification. In this study, we propose the method to design system with FLC in stability point which is an impotent characteristic of designing system. The circle criterion which is adapted to analysis the nonlinear system is put to use for proposed method. Since SISO FLC has a time-invariant and odd characteristic we can use the critical point not disk which is generally used to determine the stability in the circle criterion, to determine the stability. Using this, we can get the maximum critical point plot of SISO FLC with changing the consequence fuzzy variables. The predetermined critical point plot of FLC can be used to decide the region of the system to be stable. This method is effectively used to design the SISO FLC.

On covariance control theory for linear discrete systems via inverse solution of the Lyapunov matrix equation (Lyapunov 행렬방정식의 역해를 이용한 선형 이산시스템의 공분산제어)

  • Kim, Ho-Chan;Choi, Chong-Ho;Kim, Sang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.443-445
    • /
    • 1998
  • In this paper, an alternate method for state-covariance assignment for SISO(single input single output) linear systems is proposed. This method is based on the inverse solution of the Lyapunov matrix equation and the resulting formulas are similar in structure to the formulas for pole placement. Further, the set of all assignable covariance matrices to a SISO linear system is also characterized.

  • PDF

Stability analysis of fuzzy logic controller using the concept of sector bound nonlinearity (제한된 부채꼴에서의 비선형 개념을 이용한 퍼지 논리제어기의 안정성 해석)

  • 김인익;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.573-578
    • /
    • 1991
  • A stability analysis technique has been proposed for linear SISO system associated with fuzzy logic controller. An analysis technique using the concept of well-known sector bound nonlinearity and its graphical interpretation, i.e., the circle criterion, is presented. Thus the use of classical Nyquist locus and the BODE diagram is brought into the picture. The aim of this present note is to represent a graphical approach based on sector bound nonlinearity and circle criterion for assessing the performance(degree of stability) of the linear SISO system associated with fuzzy logic controller. The degree of stability of the system is defined in terms of its gain and phase margins as defined in Section 3.

  • PDF

Energy-efficient data transmission technique for wireless sensor networks based on DSC and virtual MIMO

  • Singh, Manish Kumar;Amin, Syed Intekhab
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.341-350
    • /
    • 2020
  • In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple-input multiple-output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space-time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple-input multiple-output (MIMO) data transmission technique in the WSNs. The DSC-MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC-MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single-input single-output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes.

Soft-Decision for Differential Amplify-and-Forward over Time-Varying Relaying Channel

  • Gao, Fengyue;Kong, Lei;Dong, Feihong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1131-1143
    • /
    • 2016
  • Differential detection schemes do not require any channel estimation, which can be employed under user mobility with low computational complexity. In this work, a soft-input soft-output (SISO) differential detection algorithm is proposed for amplify-and-forward (AF) over time-varying relaying channels based cooperative communications system. Furthermore, maximum-likelihood (ML) detector for M-ary differential Phase-shift keying (DPSK) is derived to calculate a posteriori probabilities (APP) of information bits. In addition, when the SISO is exploited in conjunction with channel decoding, iterative detection and decoding approach by exchanging extrinsic information with outer code is obtained. Finally, simulation results show that the proposed non-coherent approach improves detection performance significantly. In particular, the system can obtain greater performance gain under fast-fading channels.

Robust Control of Maglev Vehicles with Multimagnets Using Separate Control Techniques

  • Park, Jeon-Soo;Kim, Jong-Shik;Lee, Jin-Kul
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1240-1247
    • /
    • 2001
  • A robust control design scheme using well-developed SISO techniques is proposed for maglev vehicles that are inherently unstable MIMO systems. The proposed separate control method has basically two control loops: a stabilizing loop by a pole-placement technique, and a performance loop using a novel optimal LQ loop-shaping technique. This paper shows that the coupling terms involved in maglev vehicles with multimagnets should not be neglected but compensated for their stability and performance robustness. The robustness properties of the proposed control system are then evaluated under variations of vehicle masses and air gaps through a computer simulation. This paper also describes the reason why the proposed control technique can be suggested as a tool using only SISO techniques in controlling unstable MIMO systems such as maglev vehicles.

  • PDF

Blind MMSE Equalization of FIR/IIR Channels Using Oversampling and Multichannel Linear Prediction

  • Chen, Fangjiong;Kwong, Sam;Kok, Chi-Wah
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.162-172
    • /
    • 2009
  • A linear-prediction-based blind equalization algorithm for single-input single-output (SISO) finite impulse response/infinite impulse response (FIR/IIR) channels is proposed. The new algorithm is based on second-order statistics, and it does not require channel order estimation. By oversampling the channel output, the SISO channel model is converted to a special single-input multiple-output (SIMO) model. Two forward linear predictors with consecutive prediction delays are applied to the subchannel outputs of the SIMO model. It is demonstrated that the partial parameters of the SIMO model can be estimated from the difference between the prediction errors when the length of the predictors is sufficiently large. The sufficient filter length for achieving the optimal prediction is also derived. Based on the estimated parameters, both batch and adaptive minimum-mean-square-error equalizers are developed. The performance of the proposed equalizers is evaluated by computer simulations and compared with existing algorithms.

  • PDF

PID $\times$ (n-1) Stage PD Controller for SISO Systems

  • Prasit, Julseeewong;Prapart, Ukakimaparn;Thanit, Trisuwannawat;Anuchit, Jaruvanawat;Kitti, Tirasesth
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.407-412
    • /
    • 1998
  • A design technique based on the root locus approach for the SISO (Single-Input Single-Output) systems using PID (Proportional-Integral-Derivative) ${\times}$ (n-1) stage PD as a controller for the n$\^$th/ order plant is presented. The controller is designed based on transient and steady state response specifications. This controller can be used instead of a conventional PID controller. The overall system is approximated as a stable and robust second order system. The desired performances are achieved by increase the gain of the controller. In addition, the controller gain can be adjusted to obtain faster response with a little overshoot. The simulation results show the merits of this approach.

  • PDF

Integral-Augmented Optimal VSS for Control of Uncertain SISO Systems (불확실 시스템의 제어를 위한 적분 최적 가변 구조 알고리듬)

  • Lee, Jung-Hoon;Moon, Gun-Woo;Lee, Dae-Sik;Lee, Ju-Jang;Youn, Myung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.335-337
    • /
    • 1993
  • An integral-augmented variable structure system is suggested for the control of an uncertain SISO systems without the reaching phase problems. The integral-augmented sliding surface is defined in order to remove the reaching phase, then it is designed using the optimal technique. The example results show the effectiveness of the algorithm.

  • PDF

Analysis & Implementation of SISO, SIMO, MISO and MIMO in 5G Communication Systems Based on SDR

  • Meriem DRISSI;Nabil BENJELLOUN;Philippe DESCAMPS;Ali GHARSALLAH
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.140-146
    • /
    • 2023
  • With the rapid growth of new users and massive need for very high data rate in 5G communications system, different technologies have been developed and applied to enhance communication efficiency. One of those technologies is the MISO, MISO and MIMO which transmits and receives information with more reliability by using multiple antennas on transmitter or/and receiver side. This paper presents the latest trends in 5G telecommunications system based on software defined radio, A novel low-cost SIMO, MISO and MIMO using flexibility between USRP and Simulink is implemented tested and validated.