• 제목/요약/키워드: SIRT7

검색결과 30건 처리시간 0.021초

Loss of hepatic Sirt7 accelerates diethylnitrosamine (DEN)-induced formation of hepatocellular carcinoma by impairing DNA damage repair

  • Yuna Kim;Baeki E. Kang;Karim Gariani;Joanna Gariani;Junguee Lee;Hyun-Jin Kim;Chang-Woo Lee;Kristina Schoonjans;Johan Auwerx;Dongryeol Ryu
    • BMB Reports
    • /
    • 제57권2호
    • /
    • pp.98-103
    • /
    • 2024
  • The mammalian sirtuin family (SIRT1-SIRT7) has shown diverse biological roles in the regulation and maintenance of genome stability under genotoxic stress. SIRT7, one of the least studied sirtuin, has been demonstrated to be a key factor for DNA damage response (DDR). However, conflicting results have proposed that Sirt7 is an oncogenic factor to promote transformation in cancer cells. To address this inconsistency, we investigated properties of SIRT7 in hepatocellular carcinoma (HCC) regulation under DNA damage and found that loss of hepatic Sirt7 accelerated HCC progression. Specifically, the number, size, and volume of hepatic tumor colonies in diethylnitrosamine (DEN) injected Sirt7-deficient liver were markedly enhanced. Further, levels of HCC progression markers and pro-inflammatory cytokines were significantly elevated in the absence of hepatic Sirt7, unlike those in the control. In chromatin, SIRT7 was stabilized and colocalized to damage site by inhibiting the induction of γH2AX under DNA damage. Together, our findings suggest that SIRT7 is a crucial factor for DNA damage repair and that hepatic loss-of-Sirt7 can promote genomic instability and accelerate HCC development, unlike early studies describing that Sirt7 is an oncogenic factor.

SIRT7 Exhibits Oncogenic Potential in Human Ovarian Cancer Cells

  • Wang, Hong-Ling;Lu, Ren-Quan;Xie, Su-Hong;Zheng, Hui;Wen, Xue-Mei;Gao, Xiang;Guo, Lin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3573-3577
    • /
    • 2015
  • Background: Sirtuin7 (SIRT7) is a type of nicotinamide adenine dinucleotide oxidized form (NAD+)-dependent deacetylase and the least understood member of the sirtuins family; it is implicated in various processes, such as aging, DNA damage repair and cell signaling transduction. There is some evidence that SIRT7 may function as a tumor trigger for human malignancy. Here, we aimed to explore the biological function of SIRT7 in ovarian carcinoma cells and its potential mechanism. Materials and Methods: Expression of SIRT7 in ovarian cancer cell lines was detected by western blotting. Transduced cell lines with SIRT7 knockdown or overexpression were constructed. Cell viability, cologenic, apoptosis-associated and motility assays were performed to elucidate the biological function of SIRT7 in ovarian cancer cells. Results: SIRT7 demonstrated a higher level in ovarian cancer cell lines compared with normal cells. On the one hand, down-regulation of SIRT7 significantly reduced ovarian cancer cell growth, repressed colony formation and increased cancer cell apoptosis; on the other hand, up-regulation promoted the migration of cancer cells. Additionally, repression of SIRT7 also induced change in apoptosis-related molecules and subunits of the NF-${\kappa}B$ family. Conclusions: In the present study, our data indicated that SIRT7 might play a role of oncogene in ovarian malignancy and be a potential therapeutic target.

SIRT1 억제에 의한 DR5 발현증강과 c-FLIP 발현저해 작용으로 사람유방암세포 MCF-7의 TRAIL 감수성 증강 (Inhibition of SIRT1 Sensitizes TRAIL-Resistant MCF-7 Cells by Upregulation of DR5 and Inhibition of c-FLIP)

  • 이수훈;김학봉;김미주;이재원;배재호;김동완;강치덕;김선희
    • 생명과학회지
    • /
    • 제22권10호
    • /
    • pp.1277-1285
    • /
    • 2012
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)은 암세포 선택적으로 작용하므로서 유용한 항암제로 주목 받고 있다. 그러나, TRAIL 에 내성을 나타내는 암세포도 많이 존재한다. 그러므로 TRAIL 내성을 극복할 수 있는 방법을 고안하는 연구는 암 치료 요법에 매우 중요하다. 본 연구에서는 SIRT1 siRNA 또는 SIRT1 inhibitor인 amurensin G를 사람 유방암세포에 처리하면 DR5및 c-Myc의 발현 증강과 c-$FLIP_{L/S}$ 및 Mcl-1 발현 억제를 유도하므로서, TRAIL 에 내성을 나타내는 사람유방암세포 MCF-7 세포의 TRAIL 감수성을 증강시킴을 알 수 있었다. 또한, SIRT1 억제에 의한 caspase 활성화, PARP cleavage 및 Bcl-2 발현감소를 나타내었다. 이러한 연구결과는 SIRT1 저해에 의한 DR5 유도와 함께 c-FLIP 발현 억제가 TRAIL 내성 암세포의 TRAIL 반응성 증강에 유용한 기전으로 사용 될 수 있음을 시사하였다.

Defect of SIRT1-FoxO3a axis is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated cellular senescence and nematode aging

  • Ham, Hye-Jun;Park, Jeong-Woo;Bae, Young-Seuk
    • BMB Reports
    • /
    • 제52권4호
    • /
    • pp.265-270
    • /
    • 2019
  • We investigated whether SIRT1 is associated with reactive oxygen species (ROS) accumulation during CK2 downregulation-mediated senescence. SIRT1 overexpression suppressed ROS accumulation, reduced transcription of FoxO3a target genes, and nuclear export and acetylation of FoxO3a, which were induced by CK2 downregulation in HCT116 and MCF-7 cells. Conversely, overexpression of a dominant-negative mutant SIRT1 (H363Y) counteracted decreased ROS levels, increased transcriptional activity of FoxO3a, and increased nuclear import and decreased acetylation of FoxO3a, which were induced by CK2 upregulation. CK2 downregulation destabilized SIRT1 protein via an ubiquitin-proteasome pathway in human cells, whereas CK2 overexpression reduced ubiquitination of SIRT1. Finally, the SIRT1 activator resveratrol attenuated the accumulation of ROS and lipofuscin as well as lifespan shortening, and reduced expression of the DAF-16 target gene sod-3, which were induced by CK2 downregulation in nematodes. Altogether, this study demonstrates that inactivation of the SIRT1-FoxO3a axis, at least in part, is involved in ROS generation during CK2 downregulation-mediated cellular senescence and nematode aging.

SIRT1 inhibitor에 의한 Hsp90 inhibitor의 Hsp90 샤페론 기능 억제 및 항암제 내성세포의 Hsp90 inhibitor에 대한 세포독성 증강 (SIRT1 Inhibitor Enhances Hsp90 Inhibitor-mediated Abrogation of Hsp90 Chaperone Function and Potentiates the Cytotoxicity of Hsp90 Inhibitor in Chemo-resistant Human Cancer Cells)

  • 문현정;이수훈;김학봉;이경아;강치덕;김선희
    • 생명과학회지
    • /
    • 제26권7호
    • /
    • pp.826-834
    • /
    • 2016
  • 본 연구는 Hsp90 inhibitor 및 SIRT1 inhibitor의 병용처리가 항암제 다제내성(MDR) 인간 암세포의 증식 억제에 효과적임을 밝혔다. SIRT1 활성 억제가 Hsp90 inhibitor인 17-AAG의 세포 독성의 효과를 증강시켰으며, 이로 인해 Hsp90 inhibitors에 대한 내성을 극복시킬 수 있음을 인간 자궁암세포인 HeyA8의 MDR 변이주인 HeyA8- MDR 세포에서 확인하였다. SIRT1 inhibitor는 Hsp90 inhibitor에 의한 Hsp90 샤페론 기능 억제를 증강시키며, ubiquitin ligase CHIP의 발현 증강을 유발하여, Hsp90 client protein 인 mutant p53 (mut p53)의 분해를 촉진시킨다. Mut p53 의 발현 감소는 암세포의 Hsp90 inhibitor 내성 획득의 가장 중요한 원인으로 지적되는 heat shock factor 1 (HSF1)/heat shock proteins (Hsps)의 발현 억제와 관련됨을 알 수 있었으며, 이는 항암제 다제내성 세포에서 SIRT1 inhibitor에 의하여 Hsp90 inhibitor에 대한 감수성이 증강되는 분자적 기전임을 밝혔다. 그러므로, SIRT1 억제에 의한 mut p53/HSF1 발현 감소가 MDR 암세포의 Hsp90 inhibitors 내성 극복에 매우 유효함을 시사하는 결과를 얻었다.

Changes in SIRT gene expression during odontoblastic differentiation of human dental pulp cells

  • Jang, Young-Eun;Go, Su-Hee;Lee, Bin-Na;Chang, Hoon-Sang;Hwang, In-Nam;Oh, Won-Mann;Hwang, Yun-Chan
    • Restorative Dentistry and Endodontics
    • /
    • 제40권3호
    • /
    • pp.223-228
    • /
    • 2015
  • Objectives: The aim of this study was to investigate the expression of 7 different sirtuin genes (SIRT1-SIRT7) in human dental pulp cells (HDPCs), and to determine the role of SIRTs in the odontoblastic differentiation potential of HDPCs. Materials and Methods: HDPCs were isolated from freshly extracted third molar teeth of healthy patients and cultulred in odontoblastic differentiation inducing media. Osteocalcin (OCN) and dentin sialophosphoprotein (DSPP) expression was analyzed to evaluate the odontoblastic differentiation of HDPCs by reverse transcription-polymerase chain reaction (RT-PCR), while alizarin red staining was used for the mineralization assay. To investigate the expression of SIRTs during odontoblastic differentiation of HDPCs, real time PCR was also performed with RT-PCR. Results: During the culture of HDPCs in the differentiation inducing media, OCN, and DSPP mRNA expressions were increased. Mineralized nodule formation was also increased in the 14 days culture. All seven SIRT genes were expressed during the odontogenic induction period. SIRT4 expression was increased in a time-dependent manner. Conclusions: Our study identified the expression of seven different SIRT genes in HDPCs, and revealed that SIRT4 could exert an influence on the odontoblast differentiation process. Further studies are needed to determine the effects of other SIRTs on the odontogenic potential of HDPCs.

As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases

  • Yunxin Zhou;Fan Zhang;Junying Ding
    • IMMUNE NETWORK
    • /
    • 제22권3호
    • /
    • pp.21.1-21.21
    • /
    • 2022
  • As far the current severe coronavirus disease 2019 (COVID-19), respiratory disease is still the biggest threat to human health. In addition, infectious respiratory diseases are particularly prominent. In addition to killing and clearing the infection pathogen directly, regulating the immune responses against the pathogens is also an important therapeutic modality. Sirtuins belong to NAD+-dependent class III histone deacetylases. Among 7 types of sirtuins, silent information regulator type-1 (SIRT1) played a multitasking role in modulating a wide range of physiological processes, including oxidative stress, inflammation, cell apoptosis, autophagy, antibacterial and antiviral functions. It showed a critical effect in regulating immune responses by deacetylation modification, especially through high-mobility group box 1 (HMGB1), a core molecule regulating the immune system. SIRT1 was associated with many respiratory diseases, including COVID-19 infection, bacterial pneumonia, tuberculosis, and so on. Here, we reviewed the latest research progress regarding the effects of SIRT1 on immune system in respiratory diseases. First, the structure and catalytic characteristics of SIRT1 were introduced. Next, the roles of SIRT1, and the mechanisms underlying the immune regulatory effect through HMGB1, as well as the specific activators/inhibitors of SIRT1, were elaborated. Finally, the multitasking roles of SIRT1 in several respiratory diseases were discussed separately. Taken together, this review implied that SIRT1 could serve as a promising specific therapeutic target for the treatment of respiratory diseases.

Radiosensitization Effect of Overexpression of Adenovirus-mediated SIRT6 on A549 Non-small Cell Lung Cancer Cells

  • Cai, Yong;Sheng, Zhao-Ying;Liang, Shi-Xiong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권17호
    • /
    • pp.7297-7301
    • /
    • 2014
  • Objective: To explore the radiosensitization effect of overexpression of silent information regulator 6 (SIRT6) on A549 non-small cell lung cancer (NSCLC) cells. Methods: Adenovirus vector Ad-SIRT6 causing overexpression of SIRT6 was established. Western blotting and MTT assay were adopted to detect the level of SIRT6 protein and the inhibitory rate of A549 cell proliferation after different concentrations of adenovirus transduction (0, 25, 100, 200, and 400 pfu/cell) for 24 h. Control group, Ad-null group and Ad-SIRT6 group were designed in this experiment and virus concentration of the latter two groups was 200 pfu/cell. Colony formation assays were employed to test survival fraction (SF) of the 3 groups after 0, 2, 4, 6, 8, 10 X-ray irradiation. Flow cytometry was used to detect the status of cell cycle of 3 groups after 48 h of 4Gy X-ray irradiation and Western blotting was used to determine the expression of apoptosis-related genes of 3 groups after 48 h of 4GyX-ray irradiation. Results: In the range of 25~400 pfu/cell, the inhibitory rate of A549 cell proliferation increased as adenovirus concentration raised. The inhibitory rates under the concentrations of 0, 25, 100, 200, and 400 pfu/cell were 0%, $4.23{\pm}0.34%$, $12.7{\pm}2.57%$, $22.6{\pm}3.38%$, $32.2{\pm}3.22%$, $38.7{\pm}4.09%$ and $47.8{\pm}5.58%$ and there were significantly differences among groups (P<0.05). SF in Ad-SIRT6 group was lower than Ad-null and control groups after 4~10Gy X-ray irradiation (P<0.05) and the sensitization enhancement ratio (SER) was 1.35 when compared with control group. Moreover, after 48 h of 4Gy X-ray irradiation, there appeared a significant increase in G1-phase cell proportion, upregulated expression of the level of apoptosis-promoting genes (Bax and Cleaved caspase-3), but a obvious decline in S-phase and G2-phase cell proportion and a significant decrease of the level of apoptosis-inhibiting gene (Bal-2) in the Ad-SIRT6 group (P<0.05). Conclusion: The over-expression of adenovirus-mediated SIRT6, which has radiosensitization effect on A549 cells of NSCLC, can inhibit the proliferation of A549 cells and cause G0/G1 phase retardation as well as induce apoptosis of cells.

Emerging role of sirtuins on tumorigenesis: possible link between aging and cancer

  • Cha, Yong I.;Kim, Hyun-Seok
    • BMB Reports
    • /
    • 제46권9호
    • /
    • pp.429-438
    • /
    • 2013
  • Aging is the strongest risk factor for cancer development, suggesting that molecular crosstalks between aging and tumorigenesis exist in many cellular pathways. Recently, Sirtuins (Sirt1-7), the mammalian homologues of aging-related $sir2{\alpha}$ in yeast, have been shown to modulate several major cellular pathways, such as DNA repair, inflammation, metabolism, cell death, and proliferation in response to diverse stresses, and may serve as a possible molecular link between aging and tumorignenesis. In addition, growing evidence suggests that sirtuins are directly implicated in the development of cancer, and they can act as either a tumor suppressor or promoter, depending on the cellular context and tumor types. While the functions of Sirt1 in tumorigenesis have been reported and reviewed in many studies, the connection between sirtuins 2-7 and the development of cancer is less established. Thus, this review will present the recent updates on the emerging roles of Sirt2-7 members in carcinogenesis.

PARP1 Impedes SIRT1-Mediated Autophagy during Degeneration of the Retinal Pigment Epithelium under Oxidative Stress

  • Jang, Ki-Hong;Hwang, Yeseong;Kim, Eunhee
    • Molecules and Cells
    • /
    • 제43권7호
    • /
    • pp.632-644
    • /
    • 2020
  • The molecular mechanism underlying autophagy impairment in the retinal pigment epithelium (RPE) in dry age-related macular degeneration (AMD) is not yet clear. Based on the causative role of poly(ADP-ribose) polymerase 1 (PARP1) in RPE necrosis, this study examined whether PARP1 is involved in the autophagy impairment observed during dry AMD pathogenesis. We found that autophagy was downregulated following H2O2-induced PARP1 activation in ARPE-19 cells and olaparib, PARP1 inhibitor, preserved the autophagy process upon H2O2 exposure in ARPE-19 cells. These findings imply that PARP1 participates in the autophagy impairment upon oxidative stress in ARPE-19 cells. Furthermore, PARP1 inhibited autolysosome formation but did not affect autophagosome formation in H2O2-exposed ARPE-19 cells, demonstrating that PARP1 is responsible for impairment of late-stage autophagy in particular. Because PARP1 consumes NAD+ while exerting its catalytic activity, we investigated whether PARP1 impedes autophagy mediated by sirtuin1 (SIRT1), which uses NAD+ as its cofactor. A NAD+ precursor restored autophagy and protected mitochondria in ARPE-19 cells by preserving SIRT1 activity upon H2O2. Moreover, olaparib failed to restore autophagy in SIRT1-depleted ARPE-19 cells, indicating that PARP1 inhibits autophagy through SIRT1 inhibition. Next, we further examined whether PARP1-induced autophagy impairment occurs in the retinas of dry AMD model mice. Histological analyses revealed that olaparib treatment protected mouse retinas against sodium iodate (SI) insult, but not in retinas cotreated with SI and wortmannin, an autophagy inhibitor. Collectively, our data demonstrate that PARP1-dependent inhibition of SIRT1 activity impedes autophagic survival of RPE cells, leading to retinal degeneration during dry AMD pathogenesis.