• Title/Summary/Keyword: SILO

Search Result 185, Processing Time 0.022 seconds

Exposure Assessment of Hazardous gases in Confined Spaces (밀폐공간 종류별 유해가스 발생 농도 평가)

  • Park, Hyunhee;Yoo, Kye-mook;Ham, Seung-hon;Chung, Kwang-Jae;Shin, Min-a;Lee, Koo-yong;Jang, Kyung-jo;Yoon, Chung-sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.381-389
    • /
    • 2009
  • Confined spaces are inherently dangerous workplace and many fatal and nonfatal accidents have been reported. Even though these accidents occur in various kinds of confined spaces, there has rarely been reported on the health hazard agent, i.e., the types of gases and their concentration ranges. Therefore in this study, we evaluated several toxic and asphyxiating gas concentrations in various confined spaces. We surveyed 57 manholes, 3 sewage treatment plants, 2 yellow radish manufacturing companies and 7 barges to measure the concentrations of oxygen($O_2$), hydrogen sulfide($H_2S$), carbon monoxide(CO), ammonia($NH_3$). Lower Explosion Limits(LEL) and Volatile Organic Compounds (VOCs). Those four types of confined spaces occupies 56% of accidents during last 9 years in Korea. In 57 manholes, the concentration varied according to the types of manholes; rainfall and sewage, and by location; residential and industrial areas. Sewage manhole in industrial area was evaluated as the most hazardous than other types of manhole like rainfall manholes, residential sewage manholes. The highest $H_2S$ concentration and the lowest $O_2$ concentration at sewage manhole in industrial area were 300 ppm, 8.7% respectively. In 3 sewage treatment plants, $H_2S$ and $NH_3$ concentrations were reached up to the 500 ppm and 200 ppm respectively. Two yellow radish manufacturing companies showed the concentrations of 316 ppm, 505.2 ppm, 90 ppm and 15.7% for $H_2S$, CO, VOCs and $O_2$, respectively. Seven barges showed 15.9%~20.9% oxygen concentration. Gas species and concentration ranges varied by the types and location of confined spaces; CO, $H_2S$, $O_2$ could be hazardous in manhole, especially manhole connected to sewage plants. CO, $H_2S$, LEL, $O_2$, $NH_3$ should be controlled in sludge silo and sluge pumping confined spaces in sewage treatment plant. The activity of lifting out radish from the storage tank was evaluated more hazardous rather than the other activities in yellow radish manufacturing industry. The employers must conduct the survey to identify all possible confined spaces in their local workplace prior to performing the tasks. At the national level to reduce the accidents in the confined spaces, we suggest that systemic approach and active education program including possible hazards, standard operation procedures, ventilation plan, and personal protective equipment in confined spaces should be implemented.

Effect of Glucose and Formic Acid on the Quality of Napiergrass Silage After Treatment With Urea

  • Yunus, M.;Ohba, N.;Tobisa, M.;Shimojo, M.;Masuda, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.2
    • /
    • pp.211-215
    • /
    • 2001
  • Urea as a silage additive increases crude protein but reduces fermentation quality of silage by increasing pH and enhancing clostridial bacteria growth, especially in low sugar forages. Glucose and formic acid might be expected to compensate these defects caused by urea addition to grass silage. Thus, in this experiment urea formic acid or urea with glucose was applied to improve N content and the quality of napiergrass (Pennisetum purpureum Schumach.) silage. The first growth of napiergrass was harvested at 85 days of age and about 700 g of the grass was ensiled in laboratory silos (1.0 liter polyethylene containers) for 2, 7, 14, and 30 days at room temperature ($28^{\circ}C$). The treatments were no additives (control), urea, urea+glucose or urea+formic acid. Urea was added before ensiling at 0.5% of fresh weight of napiergrass and glucose and formic acid were added at 1% of fresh weight, respectively. After opening the silo, pH, dry matter content (DM), contents on DM basis of total N (TN), volatile basic nitrogen (VBN), lactic acid (LA), acetic acid (AA) and butyric acid (BA) were determined. The control at 30 days of fermentation showed 5.89 for pH with 13.8% for VBN/TN and 1.51% for AA. The addition of urea increased TN by about 1.5% units but decreased the fermentation quality by increasing pH from 5.89 to 6.86, increasing VBN/TN from 13.8% to 24.63%, increasing BA from 0.02% to 0.56%, and decreasing LA from 1.03% to 0.02%. Glucose addition with urea significantly decreased VBN/TN from 13.8% to 4.44% by reducing pH from 6.86 to 4.83 because of higher production of LA (2.62%). Adding urea and formic acid resulted in a more pronounced depression of VBN/TN and fermentation than the addition of urea and glucose. This study suggested that the combination of 1% glucose or 1% formic acid with 0.5% urea will improve nutritive value and fermentation quality of napiergrass silage.

Effects of Aspergillus oryzae Inclusion on Corn Silage Fermentation

  • Chiou, Peter Wen-Shyg;Ku, Hsiao-Che;Chen, Chao-Ren;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1568-1579
    • /
    • 2001
  • This study is aimed at evaluating the effect of Aspergillus oryzae fermentation extract (AFE) on corn silage fermentation characteristics. Trial included two groups of treatments, with or without AFE inclusion in corn ensilage. Sixty corn silage containers, including two treatments with thirty replicates each, were processed in a laboratory scale mini-silo of 21 cm radius by 45 cm height. Three replicate containers were opened and sampled for analysis at 0, 0.5, 1, 2, 3, 4, 6, 10, 18 and 34 days after being ensiled. One silage container from each treatment was installed with a remote controlled electronic thermometer to record the temperature changes. Analysis included silage temperature, pH, fermentation acids, the water-soluble carbohydrates and chemical compositions and the silage protein fractions. Results showed that on the first day, the temperature of the ensiled corn was slightly higher than room temperature, but returned to room temperature on the second day. The pH and concentrations of WSC, ADF, lignin and acetic acid in the AFE treated silage were significantly lower than the control groups (p<0.05). The lactic acid and crude protein on the other hand were significantly higher in the AFE treated silage as compared to the control (p<0.05) at the end of the ensilage period. The DM content was significantly higher (p<0.05) whereas the butyric acid content of the AFE treated silage was significantly lower (p<0.05) than the control at the end of the 34 day ensilage period. Titratable acid and buffering capacity in the corn silage were not significantly different between treatment groups (p>0.05). Ammonia N concentration in the AFE treated silage showed a trend of decrease (p>0.05). NPN and the protein fraction A in both groups increased during the conservation period, but fraction A in the AFE treated corn silage was significantly higher than the control silage (p<0.05). During the conservation period, the AFE treated corn silage showed a trend toward a decrease in fractions $B_1$, $B_3$ and C (p<0.05). The protein fraction B2 showed a trend toward increase in the control group and an inconsistent trend in the AFE treated silage during the ensiling period. The AFE treated silage showed a better Flieg score over the control silage (97 vs. 75) as calculated from the concentrations of lactic acid, acetic acid and butyric acid.

The Effects of Different Moisture Content and Ensiling Time on Silo Degradation of Structural Carbohydrate of Orchardgrass

  • Yahaya, M.S.;Kawai, M.;Takahashi, J.;Matsuoka, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.213-217
    • /
    • 2002
  • This study determined the influence of moisture, ensiling time and their interactions on the losses of hemicellulose and cellulose during ensiling of orchardgrass. Orchardgrass containing 80 (HM), 70 (MM) and 55% (LM) moisture was ensiled in 3 laboratory silos of 500 ml capacity for 3, 7, 21 and 91 days. The dry matter (DM), water-soluble carbohydrates (WSC), hemicellulose and cellulose contents of the ensiled orchardgrass was lowered than that of the untreated grass regardless of moisture content. Ensiling orchardgrass for 91 days (d) decreased (p<0.01) hemicellulose contents from 19 to 15%, 20 to 15% and 18 to 12% and cellulose from 31 to 29%, 29 to 26% and 27 to 26% for LM, MM and HM silage, respectively. Results from fermentation of LM and MM silages were within acceptable guidelines except for butyric acid and ammonia after 3 weeks of ensiling of MM which appeared to be lower than ideal. The results of the fermentation of HM silages were poor showing higher concentration of acetic, propionic and butyric acids and traces of isovaleric, valeric and caproic acids with ammonia at all stage of time. While the DM losses from LM and MM silages over the ensiling period were acceptable, that for HM silage increased to 13% after 91 d ensiling, confirming a poor fermentation process occurred. The greatest WSC losses occurred within 7 d of ensiling and the lowest losses occurred after 3 weeks of ensiling. Except in HM silage, the hemicellulose and cellulose losses were highest (p<0.01) in the first 3 weeks of ensiling. Hemicellulose losses were between 19 and 22% and 4.2 and 5.9% up to 3 weeks and after 3 weeks of ensiling LM and MM silages, respectively. Cellulose losses were small. In contrast, hemicellulose losses after 3 weeks of ensiling of HM silage was about 50% higher than over the first 3 weeks possibly due to clostridial type fermentation. The results showed that increasing ensiling time of high moisture orchardgrass would result in the excessive losses of DM, WSC, hemicellulose and cellulose in the silage.

Stability Analysis of Multiple Thermal Energy Storage Caverns Using a Coupled Thermal-Mechanical Model (열-역학적 연계해석 모델을 이용한 다중 열저장공동 안정성 분석)

  • Kim, Hyunwoo;Park, Dohyun;Park, Eui-Seob;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.297-307
    • /
    • 2014
  • Cavern Thermal Energy Storage system stores thermal energy in caverns to recover industrial waste heat or avoid the sporadic characteristics of renewable-energy resources, and its advantages include high injection-and-extraction powers and the flexibility in selecting a storage medium. In the present study, the structural stability of rock mass pillar between these silo-type storage caverns was assessed using a coupled thermal-mechanical model in $FLAC^{3D}$. The results of numerical simulations showed that thermal stresses due to long-term storage depended on pillar width and had significant effect on the pillar stability. A sensitivity analysis of main factors indicated that the influence on the pillar stability increased in the order cavern depth < pillar width < in situ condition. It was suggested that two identical caverns should be separated by at least one diameter of the cavern and small-diameter shaft neighboring the cavern should be separated by more than half of the cavern diameter. Meanwhile, when the line of centers of two caverns was parallel to the direction of maximum horizontal principal stress, the shielding effect of the caverns could minimize an adverse effect caused by a large horizontal stress.

Comprehensive Development Plans for the Low- and Intermediate-Level Radioactive Waste Disposal Facility in Korea and Preliminary Safety Assessment (우리나라 중·저준위 방사성폐기물 처분시설 종합개발계획(안)과 예비안전성평가)

  • Jung, Kang Il;Kim, Jin Hyeong;Kwon, Mi Jin;Jeong, Mi Seon;Hong, Sung Wook;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.4
    • /
    • pp.385-410
    • /
    • 2016
  • The disposal facility in Gyeongju is planning to dispose of 800,000 packages of low- and intermediate- level radioactive waste. This facility will be developed as a complex disposal facility that has various types of disposal facilities and accompanying management. In this study, based on the comprehensive development plan of the disposal facility, a preliminary post-closure safety assessment is performed to predict the phase development of the total capacity for the 800,000 packages to be disposed of at the site. The results for each scenario meet the performance target of the disposal facility. The assessment revealed that there is a significant impact of the inventory of intermediate-level radionuclide waste on the safety evaluation. Due to this finding, we introduce a disposal limit value for intermediate-level radioactive waste. With stepwise development of safety case, this development plan will increase the safety of disposal facilities by reducing uncertainties within the future development of the underground silo disposal facilities.

Studies on the Quality of Silage from Domeestic Herbage I. Effects of water , corn starch and glucose as additives on Kudzu ( Puerarie thunbergii Bentham ) silage (야초 사일리지의 품질향상에 관한 연구 I. 칡 사일리지 제조에 있어서 물, 전분, 포도당 첨가효과)

  • Kim, Dae-Jin;Leem, Wan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.7 no.3
    • /
    • pp.162-167
    • /
    • 1987
  • This experiment was conducted to determine the effect of the feeding value for the wild legumes silage-making with additives. The chopped Kudzu (Puerarie thunbergii Bentham) of wild legumes was ensiled by the conventional method in the small experimental silo of 2 liters. The additives used in the present experiments were water (8%),water (8%) plus corn starch (3%) and water (8%) plus glucose (3%). These additives as well as that of control without additive were set up and these silage were compared with the conventional corn silage. The fermentative qualities and the characteristic of fiber (neutral detergent fiber, NDF; acid detergent fiber, ADF; acid detergent lignin, ADL) of silage produced was determined by chemical analysis, and dry matter digestibility (DMD) was evaluated by pepsin-cellulase technique. The results obtained are summarized as follows: 1 The weight of Kudzu silage was lost under the 10% for all the treatments. 2 In degree of pH for the Kudzu silages with glucose, starch, control and water treatments were high 3.80,4.04,4.57 and 5.34, respectively.

  • PDF

Mechanical Stability Analysis to Determine the Optimum Aspect Ratio of Rock Caverns for Thermal Energy Storage (열에너지 저장용 암반 공동의 최적 종횡비 결정을 위한 역학적 안정성 해석)

  • Park, Dohyun;Ryu, Dongwoo;Choi, Byung-Hee;Sunwoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.150-159
    • /
    • 2013
  • It is generally well known that the stratification of thermal energy in heat stores can be improved by increasing the aspect ratio (the height-to-width ratio) of the stores. Accordingly, it will be desirable to apply a high aspect ratio so as to demonstrate the good thermal performance of heat stores. However, as the aspect ratio of a store increases, the height of the store become larger compared to its width, which may be unfavorable for the structural stability of the store. Therefore, to determine an optimum aspect ratio of heat stores, a quantitative mechanical stability assessment should be performed in addition to thermal performance evaluations. In the present study, we numerically investigated the mechanical stability of silo-shaped rock caverns for underground thermal energy storage at different aspect ratios. The applied aspect ratios ranged from 1 to 6 and the mechanical stability was examined based on factor of safety using a shear strength reduction method. The results from the present study showed that the factor of safety of rock caverns tended to decrease with the increase in aspect ratio and the stress ratio of the surrounding rock mass was influential to the stability of the caverns. In addition, the numerical results demonstrated that under the same conditions of rock mass properties and aspect ratio, mechanical stability could be improved by the reduction in cavern size (storage volume), which indicates that one can design high-aspect-ratio rock caverns by dividing a single large cavern into multiple small caverns.

STP Development in the Context of Smart City

  • Brochler, Raimund;Seifert, Mathias
    • World Technopolis Review
    • /
    • v.8 no.2
    • /
    • pp.74-81
    • /
    • 2019
  • Cities will soon host two third of the population worldwide, and already today 80% of the world energy is used in the 20 largest cities. Urban areas create 80% of the greenhouse gas emission, so we should take care that urban areas are smart and sustainable as implementations have especially here the greatest impact. Smart Cities (SC) or Smart Sustainable Cities (SSC) are the actual concepts that describe methodologies how cities can handle the high density of citizens, efficiency of energy use, better quality of life indicators, high attractiveness for foreign investments, high attractiveness for people from abroad and many other critical improvements in a shifting environment. But if we talk about Entrepreneurship Ecosystem and Innovation, we do not see a lot of literature covering this topic within those SC/SSC concepts. It seems that 'Smart' implies that all is embedded, or isn't it properly covered as brick stone of SC/SSC concepts, as they are handled in another 'responsibility silo', meaning that the policy implementation of a Science and Technology Park (STP) is handled in another governing body than SC/SSC developments. If this is true, we will obviously miss a lot of synergy effects and economies of scale effects. Effects that we could have in case we stop the siloed approaches of STPs by following a more holistic concept of a Smart Sustainable City, covering also a continuous flow of innovation into the city, without necessarily always depend on large corporate SSC solutions. We try to argue that every SSC should integrate SP/STP concepts or better their features and services into their methodology. The very limited interconnectivity between these concepts within the governance models limits opportunities and performance in both systems. Redesigning the architecture of the governance models and accepting that we have to design a system-of-systems would support the possible technology flow for smart city technologies, it could support testbed functionalities and the public-private partnership approach with embedded business models. The challenge is of course in complex governance and integration, as we often face siloed approaches. But real SSC are smart as they are connecting all those unconnected siloes of stakeholders and technologies that are not yet interoperable. We should not necessarily follow anymore old greenfield approaches neither in SSCs nor in SP and STP concepts from the '80s that don't fit anymore, being replaced by holistic sustainability concepts that we have to implement in any new or revised SSC concepts. There are new demands for each SP/STP being in or close to an SC/SCC as they have a continuous demand for feeding the technology base and the application layer and should also act as testbeds. In our understanding, a big part of STP inputs and outputs are still needed, but in a revised and extended format. We know that most of the SC/STP studies claim the impact is still far from understood and often debated, therefore we must transform the concepts where SC/STPs are not own 'cities', but where they act as technology source and testbed for industry and new SSC business models, being part of the SC/STP concept and governance from the beginning.

Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling (중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 1. 지하수 유동 모델링)

  • Park, Kyung-Woo;Ji, Sung-Hoon;Kim, Chun-Soo;Kim, Kyung-Su;Kim, Ji-Yeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.265-282
    • /
    • 2008
  • Based on the site characterization works in a low and intermediate level waste(LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network(DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  • PDF