• Title/Summary/Keyword: SIFT Descriptor

Search Result 52, Processing Time 0.021 seconds

Deep Learning-based Scene Change Detection (딥 러닝을 이용한 화면 전환 검출)

  • Lee, Jae-eun;Seo, Young-Ho;Kim, Dong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.549-550
    • /
    • 2019
  • In this paper, we propose a method to detect the scene change using deep learning. To extract feature points, we use a deep neural network and express extracted feature points as 128 dimensional vectors using SIFT descriptor. If it is less than 25%, it is determined that the scene is changed.

  • PDF

A Method of Constructing Robust Descriptors Using Scale Space Derivatives (스케일 공간 도함수를 이용한 강인한 기술자 생성 기법)

  • Park, Jongseung;Park, Unsang
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.764-768
    • /
    • 2015
  • Requirement of effective image handling methods such as image retrieval has been increasing with the rising production and consumption of multimedia data. In this paper, a method of constructing more effective descriptor is proposed for robust keypoint based image retrieval. The proposed method uses information embedded in the first order and second order derivative images, in addition to the scale space image, for the descriptor construction. The performance of multi-image descriptor is evaluated in terms of the similarities in keypoints with a public domain image database that contains various image transformations. The proposed descriptor shows significant improvement in keypoint matching with minor increase of the length.

Filtering Feature Mismatches using Multiple Descriptors (다중 기술자를 이용한 잘못된 특징점 정합 제거)

  • Kim, Jae-Young;Jun, Heesung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • Feature matching using image descriptors is robust method used recently. However, mismatches occur in 3D transformed images, illumination-changed images and repetitive-pattern images. In this paper, we observe that there are a lot of mismatches in the images which have repetitive patterns. We analyze it and propose a method to eliminate these mismatches. MDMF(Multiple Descriptors-based Mismatch Filtering) eliminates mismatches by using descriptors of nearest several features of one specific feature point. In experiments, for geometrical transformation like scale, rotation, affine, we compare the match ratio among SIFT, ASIFT and MDMF, and we show that MDMF can eliminate mismatches successfully.

Fast Object Classification Using Texture and Color Information for Video Surveillance Applications (비디오 감시 응용을 위한 텍스쳐와 컬러 정보를 이용한 고속 물체 인식)

  • Islam, Mohammad Khairul;Jahan, Farah;Min, Jae-Hong;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.1
    • /
    • pp.140-146
    • /
    • 2011
  • In this paper, we propose a fast object classification method based on texture and color information for video surveillance. We take the advantage of local patches by extracting SURF and color histogram from images. SURF gives intensity content information and color information strengthens distinctiveness by providing links to patch content. We achieve the advantages of fast computation of SURF as well as color cues of objects. We use Bag of Word models to generate global descriptors of a region of interest (ROI) or an image using the local features, and Na$\ddot{i}$ve Bayes model for classifying the global descriptor. In this paper, we also investigate discriminative descriptor named Scale Invariant Feature Transform (SIFT). Our experiment result for 4 classes of the objects shows 95.75% of classification rate.

Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications (비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류)

  • Islam, Mohammad Khairul;Jahan, Farah;Min, Jae-Hong;Baek, Joong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.12-20
    • /
    • 2011
  • In this paper, we propose an efficient object detection and classification algorithm for video surveillance applications. Previous researches mainly concentrated either on object detection or classification using particular type of feature e.g., Scale Invariant Feature Transform (SIFT) or Speeded Up Robust Feature (SURF) etc. In this paper we propose an algorithm that mutually performs object detection and classification. We combinedly use heterogeneous types of features such as texture and color distribution from local patches to increase object detection and classification rates. We perform object detection using spatial clustering on interest points, and use Bag of Words model and Naive Bayes classifier respectively for image representation and classification. Experimental results show that our combined feature is better than the individual local descriptor in object classification rate.

Gradual Block-based Efficient Lossy Location Coding for Image Retrieval (영상 검색을 위한 점진적 블록 크기 기반의 효율적인 손실 좌표 압축 기술)

  • Choi, Gyeongmin;Jung, Hyunil;Kim, Haekwang
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.319-322
    • /
    • 2013
  • Image retrieval research activity has moved its focus from global descriptors to local descriptors of feature point such as SIFT. MPEG is Currently working on standardization of effective coding of location and local descriptors of feature point in the context mobile based image search driven application in the name of MPEG-7 CDVS (Compact Descriptor for Visual Search). The extracted feature points consist of two parts, location information and Descriptor. For efficient image retrieval, we proposed a novel method that is gradual block-based efficient lossy location coding to compress location information according to distribution in images. From experimental result, the number of average bits per feature point reduce 5~6% and the accuracy rate keep compared to state of the art TM 3.0.

Image Identifier based on Local Feature's Histogram and Acceleration Technique using GPU (지역 특징 히스토그램 기반 영상식별자와 GPU 가속화)

  • Jeon, Hyeok-June;Seo, Yong-Seok;Hwang, Chi-Jung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.9
    • /
    • pp.889-897
    • /
    • 2010
  • Recently, a cutting-edge large-scale image database system has demanded these attributes: search with alarming speed, performs with high accuracy, archives efficiently and much more. An image identifier (descriptor) is for measuring the similarity of two images which plays an important role in this system. The extraction method of an image identifier can be roughly classified into two methods: a local and global method. In this paper, the proposed image identifier, LFH(Local Feature's Histogram), is obtained by a histogram of robust and distinctive local descriptors (features) constrained by a district sub-division of a local region. Furthermore, LFH has not only the properties of a local and global descriptor, but also can perform calculations at a magnificent clip to determine distance with pinpoint accuracy. Additionally, we suggested a way to extract LFH via GPU (OpenGL and GLSL). In this experiment, we have compared the LFH with SIFT (local method) and EHD (global method) via storage capacity, extraction and retrieval time along with accuracy.

Learning-based Detection of License Plate using SIFT and Neural Network (SIFT와 신경망을 이용한 학습 기반 차량 번호판 검출)

  • Hong, Won Ju;Kim, Min Woo;Oh, Il-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.187-195
    • /
    • 2013
  • Most of former studies for car license plate detection restrict the image acquisition environment. The aim of this research is to diminish the restrictions by proposing a new method of using SIFT and neural network. SIFT can be used in diverse situations with less restriction because it provides size- and rotation-invariance and large discriminating power. SIFT extracted from the license plate image is divided into the internal(inside class) and the external(outside class) ones and the classifier is trained using them. In the proposed method, by just putting the various types of license plates, the trained neural network classifier can process all of the types. Although the classification performance is not high, the inside class appears densely over the plate region and sparsely over the non-plate regions. These characteristics create a local feature map, from which we can identify the location with the global maximum value as a candidate of license plate region. We collected image database with much less restriction than the conventional researches. The experiment and evaluation were done using this database. In terms of classification accuracy of SIFT keypoints, the correct recognition rate was 97.1%. The precision rate was 62.0% and recall rate was 50.2%. In terms of license plate detection rate, the correct recognition rate was 98.6%.

A Post-Verification Method of Near-Duplicate Image Detection using SIFT Descriptor Binarization (SIFT 기술자 이진화를 이용한 근-복사 이미지 검출 후-검증 방법)

  • Lee, Yu Jin;Nang, Jongho
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.699-706
    • /
    • 2015
  • In recent years, as near-duplicate image has been increasing explosively by the spread of Internet and image-editing technology that allows easy access to image contents, related research has been done briskly. However, BoF (Bag-of-Feature), the most frequently used method for near-duplicate image detection, can cause problems that distinguish the same features from different features or the different features from same features in the quantization process of approximating a high-level local features to low-level. Therefore, a post-verification method for BoF is required to overcome the limitation of vector quantization. In this paper, we proposed and analyzed the performance of a post-verification method for BoF, which converts SIFT (Scale Invariant Feature Transform) descriptors into 128 bits binary codes and compares binary distance regarding of a short ranked list by BoF using the codes. Through an experiment using 1500 original images, it was shown that the near-duplicate detection accuracy was improved by approximately 4% over the previous BoF method.

Automatic Registration of High Resolution Satellite Images using Local Properties of Tie Points (지역적 매칭쌍 특성에 기반한 고해상도영상의 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Choi, Jae-Wan;Han, Dong-Yeob;Kim, -Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.353-359
    • /
    • 2010
  • In this paper, we propose the automatic image-to-image registration of high resolution satellite images using local properties of tie points to improve the registration accuracy. A spatial distance between interest points of reference and sensed images extracted by Scale Invariant Feature Transform(SIFT) is additionally used to extract tie points. Coefficients of affine transform between images are extracted by invariant descriptor based matching, and interest points of sensed image are transformed to the reference coordinate system using these coefficients. The spatial distance between interest points of sensed image which have been transformed to the reference coordinates and interest points of reference image is calculated for secondary matching. The piecewise linear function is applied to the matched tie points for automatic registration of high resolution images. The proposed method can extract spatially well-distributed tie points compared with SIFT based method.