• 제목/요약/키워드: SIFT 알고리즘

검색결과 125건 처리시간 0.024초

증강현실 응용을 위한 자연 물체 인식 (Natural Object Recognition for Augmented Reality Applications)

  • 안잔 쿠마르 폴;모하마드 카이룰 이슬람;민재홍;김영범;백중환
    • 융합신호처리학회논문지
    • /
    • 제11권2호
    • /
    • pp.143-150
    • /
    • 2010
  • 무마커 증강현실 시스템은 실내나 옥외 환경에서 자연 물체를 인식하고 매칭하는 기능이 필수적이다. 본 논문에서는 비주얼 서술자와 코드북을 사용하여 특징을 추출하고 자연 물체를 인식하는 기법을 제안한다. 증강현실 응용은 동작 속도와 실시간 성능에 민감하기 때문에, 본 연구에서는 멀티 클래스의 자연 물체 인식에 초점을 두었으며 분류와 특징 추출 시간을 줄이는 것을 포함한다. 훈련과 테스트 과정에서 자연 물체로부터 특징을 추출하기 위해 SIFT와 SURF을 각각 사용하고 그들의 성능을 비교한다. 또한, 클러스터링 알고리즘을 이용하여 다차원의 특징 벡터들로부터 비주얼 코드북을 생성하고 나이브 베이즈 분류기를 이용해 물체를 인식한다.

부분 얼굴 특징 추출에 기반한 신원 확인 시스템 (Identification System Based on Partial Face Feature Extraction)

  • 최선형;조성원;정선태
    • 한국지능시스템학회논문지
    • /
    • 제22권2호
    • /
    • pp.168-173
    • /
    • 2012
  • 본 논문은 얼굴인식 시스템 상에서 마스크를 착용한 변장이미지가 입력 감지될 경우 나머지 노출된 부분의 특징만을 가지고 가려진 사람의 신원을 추정하는 방법을 기술한다. 얼굴영역 검출 후에 마스크상단의 눈 주변 이미지만을 가지고 특징점 추출을 실시하여 등록된 얼굴 인증 데이터 베이스와의 특징점 비교를 통해 사람의 신원을 추정한다. 매칭에 쓰일 특징점 추출에는 조명에 강인하고 영상의 크기와 회전에도 변하지 않는 특성을 가진 SIFT(Scale Invariant Feature Transform) 알고리즘을 이용한다. 특징점 매칭을 통해 정확한 매칭률은 전체 실험결과를 통해 평가한다.

CPU와 GPU의 병렬 처리를 이용한 고속 물체 인식 알고리즘 구현 (The Implementation of Fast Object Recognition Using Parallel Processing on CPU and GPU)

  • 김준철;정용한;박은수;최학남;김학일;허욱렬
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.488-495
    • /
    • 2009
  • This paper presents a fast feature extraction method for autonomous mobile robots utilizing parallel processing and based on OpenMP, SSE (Streaming SIMD Extension) and CUDA programming. In the first step on CPU version, the algorithms and codes are optimized and then implemented by parallel processing. The parallel algorithms are debugged to maintain the same level of performance and the process for extracting key points and obtaining dominant orientation with respect to key points is parallelized. After extraction, a parallel descriptor via SSE instructions is constructed. And the GPU version also implemented by parallel processing using CUDA based on the SIFT. The GPU-Parallel descriptor achieves an acceleration up to five times compared with the CPU-Parallel descriptor, but it shows the lower performance than CPU version. CPU version also speed-up the four and half times compared with the original SIFT while maintaining robust performance.

연속 영상에서 강인한 얼굴 및 얼굴 특징 추적 (Robust Face and Facial Feature Tracking in Image Sequences)

  • 장경식;이찬희
    • 한국정보통신학회논문지
    • /
    • 제14권9호
    • /
    • pp.1972-1978
    • /
    • 2010
  • AAM(Active Appearance Model)은 변형 가능한 형태의 검출에 가장 효과 적인 방법의 하나이며, 수학적으로 최적화 문제이다. 비용함수는 최소자승 함수이어서 볼록 함수이나, 탐색 공간이 볼록공간이 아니므로 국소 최소값이 전역 최소값인 것으로 보장 되지 않는다. 즉 초기값이 전역 최소값 근방에서 출발하지 않으면, 지역 최소값에 수렴하여 정확한 얼굴 윤곽 검출이 어려워진다. 본 논문에서는 연속적인 입력영상에 SIFT(Scale Invariant Feature Transform)와 유전자 알고리즘을 사용하여 눈동자를 검출하고 AAM 모델의 초기화 정보로 사용함으로써 조명과 배경에 강인한 AAM 기반의 얼굴 정합 방법을 제안한다. 실험을 통하여 제안한 AAM 기반 얼굴 정합 방법이 자세, 얼굴 배경 등에 대해 기존의 AAM 기반 얼굴 정합 방법보다 더 강인한 것으로 확인 되었다.

OpenCL 및 Embedded GPU를 이용한 영상 특징 추출 및 파노라마 영상 생성의 병렬화 (Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU)

  • 강승헌;이승재;이만희;박인규
    • 방송공학회논문지
    • /
    • 제19권3호
    • /
    • pp.316-328
    • /
    • 2014
  • 본 논문에서는 최신 embedded GPU를 사용하여 영상의 특징 추출 알고리즘(SIFT, SURF)을 병렬화하고, 특징 추출 및 정합 결과를 이용하여 파노라마 영상을 GPU에서 고속으로 생성하는 방법을 제안한다. 병렬화 된 알고리즘의 GPGPU(general purpose computation on GPU) 구현은 최신 스마트폰의 embedded GPU에서 지원하기 시작한 OpenCL을 이용하였다. 본 논문에서는 GPU에서 OpenGL Shading Language(GLSL)를 이용한 기존의 병렬화와 OpenCL을 이용한 새로운 병렬화 구현 결과를 효과적인 코드 구현 방법과 수행속도 관점에서 비교하였다. 실험결과, OpenCL은 GLSL과 유사한 수행 속도를 보였으며 embedded CPU와 비교하여 약 3~4배 빠른 수행속도를 보였다. 구현한 특징 추출 결과의 응용 사례로써, 특징 정합을 통한 영상 정합을 GPU상에서 병렬 수행하여 여러 장의 영상으로부터 파노라마 영상을 고속으로 생성하는 사례를 보인다.

비디오 감시 응용에서 확장된 기술자를 이용한 물체 검출과 분류 (Object Detection and Classification Using Extended Descriptors for Video Surveillance Applications)

  • 모하마드 카이룰 이슬람;파라 자한;민재홍;백중환
    • 대한전자공학회논문지SP
    • /
    • 제48권4호
    • /
    • pp.12-20
    • /
    • 2011
  • 본 논문은 비디오 감시 장치에 사용되는 효율적인 물체 검출 및 분류 알고리즘을 제안한다. 이전 연구는 주로 Scale Invariant Feature Transform (SIFT)나 Speeded Up Robust Feature (SURF)와 같은 특정 형태의 특징을 이용해 물체를 검출하거나 분류하였다. 본 논문에서는 물체 검출 및 분류에 상호 작용하는 알고리즘을 제안한다. 이는 로컬 패치들로부터 얻어지는 텍스쳐나 컬러 분포 같은 서로 다른 특성을 갖는 특징값을 이용해 물체의 검출 및 분류율을 높인다. 물체 검출에는 특징점들의 공간적인 클러스터링을, 이미지 표현이나 분류에는 Bag of Words 모델과 Naive Bayes 분류기를 사용한다. 실험을 통해 제안한 기법이 로컬 기술자를 사용한 물체 분류기법보다 우수한 성능을 나타냄을 보인다.

강도영상과 거리영상에 의한 건물 스캐닝 점군간 3차원 정합 실험 (Experiment for 3D Coregistration between Scanned Point Clouds of Building using Intensity and Distance Images)

  • 전민철;어양담;한동엽;강남기;편무욱
    • 대한원격탐사학회지
    • /
    • 제26권1호
    • /
    • pp.39-45
    • /
    • 2010
  • 본 연구는 지상라이다 자료의 점군간 자동정합을 위해 인접한 두 점군 자료와 함께 획득되는 2차원의 강도영상 자료로부터, 2개 영상에서 동시에 관측되는 특징점들을 이용하여 SIFT 알고리즘에 의해 공액점을 선정하였다. 또한 매칭 오류점 배제를 위해 RANSAC 알고리즘을 적용하여 정합 정확도 향상을 도모하였다. 두 점군간의 변환식 매개변수인 3차원 회전변환 각과 수직/수평 이동량을 계산, 그 결과를 기존 수작업에 의한 결과와 비교하였다. 건국대학교 이과대학 건물을 대상으로 실험한 결과, 자동매칭을 통한 변환매개변수와 수작업으로 한 변환매개변수의 차이는 X, Y, Z, 방향으로 각각 0.011m, 0.008m, 0.052m로서 자동정합 자료의 활용이 가능하다고 판단하였다.

영상 검색을 위한 점진적 블록 크기 기반의 효율적인 손실 좌표 압축 기술 (Gradual Block-based Efficient Lossy Location Coding for Image Retrieval)

  • 최경민;정현일;김해광
    • 방송공학회논문지
    • /
    • 제18권2호
    • /
    • pp.319-322
    • /
    • 2013
  • MPEG-7 CDVS (Compact Descriptor for Visual Search)분야에서 표준화하고 있는 현대의 모바일 디바이스 및 서버에서 사용되는 영상검색과 매칭 알고리즘들은 SIFT(scale invariant feature transform)와 SURF(speeded up robust features) 같은 강인한 디스크립터를 기반으로 하는 특징 점에 의한 알고리즘으로 이루어진다. 이러한 특징 점들은 크게 좌표와 디스크립터로 나누어져 있다. 빠르고 정확한 검색을 위해서 특징 점들은 디바이스에서 서버, 또는 서버에서 디바이스로 자유롭게 전송이 되어야 하므로 과거에 여러 압축 알고리즘들이 제안 되었다. 이 논문에서는 특징 점들의 분포 및 연관성 등을 관찰하고 연구하여 좌표의 정보를 효율적으로 압축하면서 정확도를 보존할 수 있는 점진적 블록 크기 기반의 손실 좌표 압축 알고리즘을 제안한다. 실험 결과로부터 현재 가장 효율이 좋은 알고리즘 보다 특징 점당 비트가 평균적으로 0.3~0.4bit(5%~6%) 감소하고 정확도(TP,FP,TN)가 데이터 종류에 따라 유지되거나 미약하게 상승하는 결과를 얻었다.

이미지 단어집과 관심영역 자동추출을 사용한 이미지 분류 (Image Classification Using Bag of Visual Words and Visual Saliency Model)

  • 장현웅;조수선
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권12호
    • /
    • pp.547-552
    • /
    • 2014
  • 플리커, 페이스북과 같은 대용량 소셜 미디어 공유 사이트의 발전으로 이미지 정보가 매우 빠르게 증가하고 있다. 이에 따라 소셜 이미지를 정확하게 검색하기 위한 다양한 연구가 활발히 진행되고 있다. 이미지 태그들의 의미적 연관성을 이용하여 태그기반의 이미지 검색의 정확도를 높이고자 하는 연구를 비롯하여 이미지 단어집(Bag of Visual Words)을 기반으로 웹 이미지를 분류하는 연구도 다양하게 진행되고 있다. 본 논문에서는 이미지에서 배경과 같은 중요도가 떨어지는 정보를 제거하여 중요부분을 찾는 GBVS(Graph Based Visual Saliency)모델을 기존 연구에 사용할 것을 제안한다. 제안하는 방법은 첫 번째, 이미지 태그들의 의미적 연관성을 이용해 1차 분류된 데이터베이스에 SIFT알고리즘을 사용하여 이미지 단어집(BoVW)을 만든다. 두 번째, 테스트할 이미지에 GBVS를 통해서 이미지의 관심영역을 선택하여 테스트한다. 의미연관성 태그와 SIFT기반의 이미지 단어집을 사용한 기존의 방법에 GBVS를 적용한 결과 더 높은 정확도를 보임을 확인하였다.

재구성형 프로세서 맵핑을 위한 컴퓨터 비전 응용 분석 : SIFT (Analysis of Computer Vision Application for CGRA Mapping : SIFT)

  • 허인구;김용주;이진용;조영필;백윤흥;고광만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 추계학술발표대회
    • /
    • pp.5-8
    • /
    • 2011
  • 최근 영상이나 이미지로부터 사용자가 원하는 정보를 추출해 내고 재구성 하는 영상 인식, 증강 현실 등의 컴퓨터 비전(Computer Vision) 응용들이 각광을 받고 있다. 이러한 컴퓨터 비전 응용들은 그 동안 많은 알고리즘들의 연구를 통해 꾸준히 개선되고 향상되어 왔으나, 많은 계산량을 요구하기 때문에 임베디드 시스템에서는 널리 쓰이기 힘들었다. 하지만 최근 들어, 스마트폰 등의 모바일 기기에서의 계산 처리 능력이 향상 되고, 소비자 수요가 증가하면서, 이러한 컴퓨터 비전 응용은 점점 모바일 기기에서 널리 쓰이게 되고 있다. 하지만, 여전히 이러한 컴퓨터 응용을 수행하기 위한 계산양은 부족하기 때문에, 충분한 연산량을 제공하기 위한 방법론들이 다양하게 제시되고 있다. 본 논문에서는 이러한 컴퓨터 응용을 위한 프로세서 구조로서 재구성형 프로세서(Reconfigurable Architecture)를 제안한다. 컴퓨터 비전 응용 중 사물 인식 분야에서 널리 쓰이는 SIFT(Scale Invariant Feature Transformation)을 분석하고 이를 재구성형 프로세서에 맵핑하여 성능 향상을 꾀하였다. SIFT의 주요 커널들을 재구성형 프로세서 맵핑한 결과 최소 6.5배에서 최대 9.2배의 성능 향상을 이룰 수 있었다.