• Title/Summary/Keyword: SIFCON

Search Result 10, Processing Time 0.017 seconds

Flexural Behavior of RC Beam Made of Slurry Infiltrated Fiber Concrete (슬러리 충전 강섬유 콘크리트로 제작된 RC 보의 휨 거동)

  • Han, Sang-Hoon;Jeon, Byeong-Gu;Hong, Ki-Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.26-33
    • /
    • 2018
  • This paper presents experimental and analytical results on flexural behavior of flexural members made of SIFCON. Twelve SIFCON beams were subjected to bending tests and their flexural behavior was evaluated. Experimental variables included steel fiber type, presence of tensile reinforcement, and height of section. The specimens using Type-B steel fibers, which had better pullout resistance than Type-A steel fibers, showed flexural failure behavior without shear failure. The aspect ratio of steel fiber had a great influence on the behavior of SIFCON beams without tensile steel, however the effect on the behavior of SIFCON beams was negligible. In addition, the flexural strength equation for SIFCON was proposed in the study. The mean and standard deviation of the ratios of the predicted value to the experimental value are 1.02 and 0.04, respectively. Therefore, the proposed flexural strength equation can be useful for the design and performance evaluation of SIFCON beam.

Strength and toughness prediction of slurry infiltrated fibrous concrete using multilinear regression

  • Shelorkar, Ajay P.;Jadhao, Pradip D.
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.123-132
    • /
    • 2022
  • This paper aims to adapt Multilinear regression (MLR) to predict the strength and toughness of SIFCON containing various pozzolanic materials. Slurry Infiltrated Fibrous Concrete (SIFCON) is one of the most common terms used in concrete manufacturing, known for its benefits such as high ductility, toughness and high ultimate strength. Assessment of compressive strength (CS.), flexural strength (F.S.), splitting tensile strength (STS), dynamic elasticity modulus (DME) and impact energy (I.E.) using the experimental approach is too costly. It is time-consuming, and a slight error can lead to a repeat of the test and, to solve this, alternative methods are used to predict the strength and toughness properties of SIFCON. In the present study, the experimentally investigated SIFCON data about various mix proportions are used to predict the strength and toughness properties using regression analysis-multilinear regression (MLR) models. The input parameters used in regression models are cement, fibre, fly ash, Metakaolin, fine aggregate, blast furnace slag, bottom ash, water-cement ratio, and the strength and toughness properties of SIFCON at 28 days is the output parameter. The models are developed and validated using data obtained from the experimental investigation. The investigations were done on 36 SIFCON mixes, and specimens were cast and tested after 28 days of curing. The MLR model yields correlation between predicted and actual values of the compressive strength (C.S.), flexural strength, splitting tensile strength, dynamic modulus of elasticity and impact energy. R-squared values for the relationship between observed and predicted compressive strength are 0.9548, flexural strength 0.9058, split tensile strength 0.9047, dynamic modulus of elasticity 0.8611 for impact energy 0.8366. This examination shows that the MLR model can predict the strength and toughness properties of SIFCON.

Compressive and Tensile Strength Properties of Slurry Infiltrated Fiber Concrete (슬러리 충전 강섬유 보강 콘크리트의 압축 및 인장강도 특성)

  • Kim, Suk-Ki;Choi, Jin-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.703-708
    • /
    • 2006
  • The slurry infiltrated fiber concrete(SIFCON) is recognized as one of the most promising new construction materials. Compressive and direct tensile tests are performed to investigate the mechanical property of SIFCON. Hooked-end steel fibers are used in the mix with fiber volume fraction varied from 4% to 10%. The water/cement ratio is kept constant at 0.4. The amount of silica fume added is 10% by weight of cement and 0.5% of water reducing agent is added to improve the workability of the slurry. The test results in this study show that the compressive strength of SIFCON is about 1.59 to 2.68 times in comparison with the cement paste. Tensile strength is showed the enhancement of about 2.51 to 8.77 times. It is also observed that the toughness and ductility of SIFCON are increased significantly with the increasing in fiber volume fraction.

High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part I: experimental investigations

  • Korucu, H.;Gulkan, P.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.595-616
    • /
    • 2011
  • Impact experiments have been carried out on concrete slabs. The first group was traditionally manufactured, densely reinforced concrete targets, and the next were ordinary Portland and calcium aluminate cement based HPSFRC (High performance steel fiber reinforced concrete) and SIFCON (Slurry infiltrated concrete) targets. All specimens were hit by anti-armor tungsten projectiles at a muzzle velocity of over 4 Mach causing destructive perforation. In Part I of this article, production and experimental procedures are described. The first group of specimens were ordinary CEM I 42.5 R cement based targets including only dense reinforcement. In the second and third groups, specimens were produced using CEM I 42.5 R cement and Calcium Aluminate Cement (CAC40) with ordinary reinforcement and steel fibers 2 percent in volume. In the fourth group, SIFCON specimens including 12 percent of steel fibers without reinforcement were tested. A high-speed camera was used to capture impact and residual velocities of the projectile. Sample tests were performed to obtain mechanical properties of the materials. In the companion Part II of this study, numerical investigations and simulations performed will be presented. Few studies exist that examine high-velocity impact effects on CAC40 based HPSFRC targets, so this investigation gives an insight for comparison of their behavior with Portland cement based and SIFCON specimens.

Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique

  • Cevik, Abdulkadir;Sonebi, Mohammed
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.475-490
    • /
    • 2008
  • The paper explores the potential of applicability of Genetic programming approach (GP), adopted in this investigation, to model the combined effects of five independent variables to predict the mini-slump, the plate cohesion meter, the induced bleeding test, the J-fiber penetration value, and the compressive strength at 7 and 28 days of self-compacting slurry infiltrated fiber concrete (SIFCON). The variables investigated were the proportions of limestone powder (LSP) and sand, the dosage rates of superplasticiser (SP) and viscosity modifying agent (VMA), and water-to-binder ratio (W/B). Twenty eight mixtures were made with 10-50% LSP as replacement of cement, 0.02-0.06% VMA by mass of cement, 0.6-1.2% SP and 50-150% sand (% mass of binder) and 0.42-0.48 W/B. The proposed genetic models of the self-compacting SIFCON offer useful modelling approach regarding the mix optimisation in predicting the fluidity, the cohesion, the bleeding, the penetration, and the compressive strength.

High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part II: numerical simulation and validation

  • Gulkan, P.;Korucu, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.617-636
    • /
    • 2011
  • We present the numerical implementation, simulation, and validation of the high-velocity impact experiments that have been described in the companion article. In this part, numerical investigations and simulations performed to mimic the tests are presented. The experiments were analyzed by the explicit integration-based software ABAQUS for improved simulations. Targets were modeled with a damaged plasticity model for concrete. Computational results of residual velocity and crater dimensions yielded acceptable results.

Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SIFCON-based HPFRCC

  • Kim, Seugnwon;Jung, Haekook;Kim, Yongjae;Park, Cheolwoo
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.163-171
    • /
    • 2018
  • Plain concrete is a brittle material with a very low tensile strength compared to compressive strength and critical tensile strain. This study analyzed the dynamic characteristics of high-performance fiber-reinforced cementitious composites based on slurry-infiltrated fiber concrete (SIFCON-based HPFRCC), which maximizes the steel-fiber volume fraction and uses high-strength mortar to increase resistance to loads, such as explosion and impact, with a very short acting time. For major experimental variables, three levels of fiber aspect ratio and five levels of fiber volume fraction between 6.0% and 8.0% were considered, and the flexural strength and toughness characteristics were analyzed according to these variables. Furthermore, three levels of the aspect ratio of used steel fibers were considered. The highest flexural strength of 65.0 MPa was shown at the fiber aspect ratio of 80 and the fiber volume fraction of 7.0%, and the flexural strength and toughness increased proportionally to the fiber volume fraction. The test results according to fiber aspect ratio and fiber volume fraction revealed that after the initial crack, the load of the SIFCON-based HPFRCC continuously increased because of the high fiber volume fraction. In addition, sufficient residual strength was achieved after the maximum strength; this achievement will bring about positive effects on the brittle fracture of structures when an unexpected load, such as explosion or impact, is applied.

Flexural Performance Characteristics of High Performance Slurry Infiltrated Fiber Reinforced Cementitious Composite according to Fiber Volume Fraction (섬유혼입률에 따른 고성능 슬러리 충전 강섬유보강 시멘트 복합체의 휨성능 특성)

  • Kim, Seung-Won;Cho, Hyun-Myung;Lee, Hak-Yong;Park, Cheol-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.109-115
    • /
    • 2015
  • High performance fiber reinforced cementitious composite (HPFRCC) can provide high fracture energy absorption as well as high strength with high fiber volume fraction. The increased fracture energy helps resisting high frequency loadings, such as earthquake, impact or blast. This study investigates the flexural performance of slurry infiltrated fiber concrete (SIFCON), one of the important HPFRCC, with respect to varying fiber volume fraction. The maximum fiber volume fraction was 8.0 % and reduced to 6.0% by 0.5% and the maximum volume fraction is obtained by packing fibers with simple tapping by hands. The used fiber was a steel fiber with the length 30 mm and the diameter of 0.5 mm. The flexural strengths were 48.7 MPa at 8.0 % and 22.8 MPa at 6.0 %. The measured flexural strength is much higher compared to other cememtitious composite materials but decreased proportional to the fractions. This result implies that for SIFCON considered herein the reduced amount of steel fibers may affect its flexural performance in a negatively way. The flexural toughness, an index to represent the fracture energy absorption, also decreased with the reduced fiber amount.

Explosionproof Properties of High Strength Steel Fiber Reinforced Concrete with the Contents of Steel Fiber (섬유혼입율 변화에 따른 고강도 섬유보강 콘크리트의 방폭특성)

  • 이광설;안영준;박구병;김성수;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.303-306
    • /
    • 1999
  • For the purpose of Military means, explosion proof concrete, which protect the structures from the damage due to the explosion of bomb and maintain its shape, is required to develop. Therefore, in this paper, mechanical and explosionproof properties of concrete are tested under various steel fiber contents and member size. According to the experimental results, compressive, tensile and flexural strength go up with the increase of fiber contents. Energy bearing capacities is higher with the increase of fiber contents. Especially, it is confirmed that slurry infiltrated fiber concrete (SIFCON) gains in high strength and has high energy bearing capacities. SIFCON is expected to apply in the construction of explosion proof structures.

  • PDF

Explosion-proof Properties of High Strength Steel Fiber Reinforced Concrete made with Contents of Steel Fiber (섬유혼입율 변화에 따른 고강도 섬유보강 콘크리트의 방폭특성)

  • Han, Cheon-Goo;Kim, Seong-Soo;Park, Goo-Byeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.3
    • /
    • pp.129-136
    • /
    • 2000
  • In the side of military purpose, the explosion proof concrete, which contributes to protect the military facilities from damages due to the explosion of bomb and to maintain their shapes, is required to develop, Therefore. in this paper, mechanical and explosion-proof properties of concrete are tested under various steel fiber contents and member size. According to the experimental results, compressive, tensile and flexural strength gain higher levels with an increase in fiber contents. It shows that energy bearing capacities are higher with an increase in fiber contents. Especially. it is confirmed that slurry infiltrated fiber concrete(SIFCON) gains high strength and has high energy bearing capacities. SIFCON is expected to be applied in the construction of explosion proof structures.

  • PDF