• Title/Summary/Keyword: SIDI

검색결과 450건 처리시간 0.018초

On the effect of the micromechanical models on the free vibration of rectangular FGM plate resting on elastic foundation

  • Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Benachour, Abdelkader;Bedia, El Abbas Adda
    • Earthquakes and Structures
    • /
    • 제14권2호
    • /
    • pp.117-128
    • /
    • 2018
  • In this research work, free vibrations of simply supported functionally graded plate resting on a Winkler-Pasternak elastic foundation are investigated by a new shear deformation theory. The influence of alternative micromechanical models on the macroscopic behavior of a functionally graded plate based on shear-deformation plate theories is examined. Several micromechanical models are tested to obtain the effective material properties of a two-phase particle composite as a function of the volume fraction of particles which continuously varies through the thickness of a functionally graded plate. Present theory exactly satisfies stress boundary conditions on the top and the bottom of the plate. The energy functional of the system is obtained using Hamilton's principle. The closed form solutions are obtained by using Navier technique, and then fundamental frequencies are found by solving the results of eigenvalue problems. Finally, the numerical results are provided to reveal the effect of explicit micromechanical models on natural fundamental frequencies.

Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity

  • Chemi, Awda;Heireche, Houari;Zidour, Mohamed;Rakrak, Kaddour;Bousahla, Abdelmoumen Anis
    • Advances in nano research
    • /
    • 제3권4호
    • /
    • pp.193-206
    • /
    • 2015
  • The present paper investigate the elastic buckling of chiral double-walled carbon nanotubes (DWCNTs) under axial compression. Using the non-local elasticity theory, Timoshenko beam model has been implemented. According to the governing equations of non-local theory, the analytical solution is derived and the solution for non-local critical buckling loads is obtained. The numerical results show the influence of non-local small-scale coefficient, the vibrational mode number, the chirality of carbon nanotube and aspect ratio of the (DWCNTs) on non-local critical buckling loads of the (DWCNTs). The results indicate the dependence of non-local critical buckling loads on the chirality of single-walled carbon nanotube with increase the non-local small-scale coefficient, the vibrational mode number and aspect ratio of length to diameter.

Wave dispersion properties in imperfect sigmoid plates using various HSDTs

  • Batou, Belaid;Nebab, Mokhtar;Bennai, Riadh;Atmane, Hassen Ait;Tounsi, Abdeldjebbar;Bouremana, Mohammed
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.699-716
    • /
    • 2019
  • In this paper, wave propagations in sigmoid functionally graded (S-FG) plates are studied using new Higher Shear Deformation Theory (HSDT) based on two-dimensional (2D) elasticity theory. The current higher order theory has only four unknowns, which mean that few numbers of unknowns, compared with first shear deformations and others higher shear deformations theories and without needing shear corrector. The material properties of sigmoid functionally graded are assumed to vary through thickness according sigmoid model. The S-FG plates are supposed to be imperfect, which means that they have a porous distribution (even and uneven) through the thickness of these plates. The governing equations of S-FG plates are derived employed Hamilton's principle. Using technique of Navier, differential equations of S-FG in terms displacements are solved. Extensive results are presented to check the efficient of present methods to predict wave dispersion and velocity wave in S-FG plates.

Bending analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings

  • Belbachir, Nasrine;Draich, Kada;Bousahla, Abdelmoumen Anis;Bourada, Mohamed;Tounsi, Abdelouahed;Mohammadimehr, M.
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.81-92
    • /
    • 2019
  • The present paper addresses a refined plate theoryin order to describe the response of anti-symmetric cross-ply laminated plates subjected to a uniformlydistributed nonlinear thermo-mechanical loading. In the present theory, the undetermined integral terms are used and the variables number is reduced to four instead of five or more in other higher-order theories. The boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction factors isavoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for displacements and stressesare compared with those of classical, first-order, higher-order and trigonometricshear theories reported in the literature.

Static and dynamic behavior of FGM plate using a new first shear deformation plate theory

  • Hadji, Lazreg;Meziane, M. Ait Amar;Abdelhak, Z.;Daouadji, T. Hassaine;Bedia, E.A Adda
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.127-140
    • /
    • 2016
  • In this paper, a new first shear deformation plate theory based on neutral surface position is developed for the static and the free vibration analysis of functionally graded plates (FGPs). Moreover, the number of unknowns of this theory is the least one comparing with the traditional first-order and the other higher order shear deformation theories. The neutral surface position for a functionally graded plate which its material properties vary in the thickness direction is determined. The mechanical properties of the plate are assumed to vary continuously in the thickness direction by a simple power-law distribution in terms of the volume fractions of the constituents. Based on the present shear deformation plate theory and the neutral surface concept, the governing equations are derived from the principle of Hamilton. There is no stretching-bending coupling effect in the neutral surface based formulation. Numerical illustrations concern flexural and dynamic behavior of FG plates with Metal-Ceramic composition. Parametric studies are performed for varying ceramic volume fraction, length to thickness ratios. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory

  • Rakrak, Kaddour;Zidour, Mohamed;Heireche, Houari;Bousahla, Abdelmoumen Anis;Chemi, Awda
    • Advances in nano research
    • /
    • 제4권1호
    • /
    • pp.31-44
    • /
    • 2016
  • This article is concerned with the free vibration problem for chiral double-walled carbon nanotube (DWCNTs) modelled using the non-local elasticity theory and Euler Bernoulli beam model. According to the governing equations of non-local Euler Bernoulli beam theory and the boundary conditions, the analytical solution is derived and two branches of transverse wave propagating are obtained. The numerical results obtained provide better representations of the vibration behaviour of double-walled carbon nanotube, where the aspect ratio of the (DWCNTs), the vibrational mode number, the small-scale coefficient and chirality of double-walled carbon nanotube on the frequency ratio (${\chi}^N$) of the (DWCNTs) are significant. In this work, the numerical results obtained can be used to predict and prevent the phenomenon of resonance for the forced vibration analyses of double -walled carbon nanotubes.

A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates

  • Fahsi, Asmaa;Tounsi, Abdelouahed;Hebali, Habib;Chikh, Abdelbaki;Adda Bedia, E.A.;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.385-410
    • /
    • 2017
  • This work presents a simple and refined nth-order shear deformation theory for mechanical and thermal buckling behaviors of functionally graded (FG) plates resting on elastic foundation. The proposed refined nth-order shear deformation theory has a new displacement field which includes undetermined integral terms and contains only four unknowns. Governing equations are obtained from the principle of minimum total potential energy. A Navier type analytical solution methodology is also presented for simply supported FG plates resting on elastic foundation which predicts accurate solution. The accuracy of the present model is checked by comparing the computed results with those obtained by classical plate theory (CPT), first-order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). Moreover, results demonstrate that the proposed theory can achieve the same accuracy of the existing HSDTs which have more number of variables.

On the free vibration response of laminated composite plates via FEM

  • Sehoul, Mohammed;Benguediab, Soumia;Benguediab, Mohamed;Selim, Mahmoud M.;Bourada, Fouad;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • 제39권2호
    • /
    • pp.149-158
    • /
    • 2021
  • In this research paper, the free vibrational response of laminated composite plates is investigated using a non-polynomial refined shear deformation theory (NP-RSDT). The most interesting feature of this theory is the parabolic distribution of transverse shear deformations while ensuring the conditions of nullity of shear stresses at the free surfaces of the plate without requiring the Shear correction factor "Ks". A fourth-nodded isoparametric element with four degrees of freedom per node is employed for laminated composite plates. The numerical analysis of simply supported square anti-symmetric cross-ply and angle-ply laminated plate is carried out using a special discretization based on four-node finite element method which four degrees of freedom per node. Several numerical results are presented to show the effect of the coupling parameters of the plate such as the modulus ratios, the thickness ratio and the plate layers number on adimensional eigen frequencies. All numerical results presented using the current finite element method (FEM) is presented in 3D curve form.

Thermomechanical bending investigation of FGM sandwich plates using four shear deformation plate theory

  • Bouamoud, Ahmed;Boucham, Belhadj;Bourada, Fouad;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.611-632
    • /
    • 2019
  • In this work, a four-variable refined plate model is applied to study the thermomechanical bending of two kinds of functionally graded material (FGM) sandwich plates. The sandwich core of one kind is isotropic with the FGM face sheets whereas in the second kind, the sandwich core is FGM with the isotropic and homogeneous face sheets. By considering only four unknown variables, the governing equations are written based on the principle of virtual work and then Navier method is employed to solve these equations. Deflections and stresses of two kinds of FGM sandwich structures are analyzed and discussed. The validity and efficiency of the proposed model is checked by comparing it with various available solutions in the literature. The effects of volume fraction distribution, geometric ratio and thermal load on thermomechanical bending properties of FGM sandwich plate are investigated in detail.

Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle

  • Medani, Mohammed;Benahmed, Abdelillah;Zidour, Mohamed;Heireche, Houari;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제32권5호
    • /
    • pp.595-610
    • /
    • 2019
  • This paper deals with the static and dynamic behavior of Functionally Graded Carbon Nanotubes (FG-CNT)-reinforced porous sandwich (PMPV) polymer plate. The model of nanocomposite plate is investigated within the first order shear deformation theory (FSDT). Two types of porous sandwich plates are supposed (sandwich with face sheets reinforced / homogeneous core and sandwich with homogeneous face sheets / reinforced core). Functionally graded Carbon Nanotubes (FG-CNT) and uniformly Carbon Nanotubes (UD-CNT) distributions of face sheets or core porous plates with uniaxially aligned single-walled carbon nanotubes are considered. The governing equations are derived by using Hamilton's principle. The solution for bending and vibration of such type's porous plates are obtained. The detailed mathematical derivations are provided and the solutions are compared to some cases in the literature. The effect of the several parameters of reinforced sandwich porous plates such as aspect ratios, volume fraction, types of reinforcement, number of modes and thickness of plate on the bending and vibration analyses are studied and discussed. On the question of porosity, this study found that there is a great influence of their variation on the static and vibration of porous sandwich plate.