• Title/Summary/Keyword: SIDE KICK

Search Result 16, Processing Time 0.019 seconds

Kinematical Analysis of Side Kick Motion in Taekwon Aerobics (태권에어로빅스 옆차기동작의 운동학적 분석)

  • Yoo, Sil
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.3
    • /
    • pp.33-42
    • /
    • 2008
  • The purpose of this study was to analyze kinematic variables during Side kick motion in Taekwon Aerobics. The subjects of this study were the 7 skilled and 7 unskilled female college students. A QTM and an Auto Track were used to acquire raw data. The sampling rates camera was 100 Hz. The parameters were calculated and analyzed with Visual3D and SPSS 12.0. The results were as following; 1. In the elapsed time, there was no significance difference statically between a skilled and unskilled group. 2. In the cases of knee angle, there was significant difference statically at Maximum Knee Flexion2(p=0.046, F=4.925). 3. In the cases of knee angular velocity, there was significant difference statically at Maximum Knee Flexion1(p=0.031, F=5.940). 4. In the flexion/extension of hip angle, there was significant difference statically at Maximum Knee Flexion2(p=0.012, F=8.668). 5. In the abduction/adduction of hip angular velocity, there was significant difference statically at Minimum Knee Flexion (p=0.019, F=7.324). 6. In the external rotation/internal rotation of hip angular velocity, there was significant difference statically Minimum Knee Flexion(p=0.005, F=11.87).

The Process of the Interjoint and Intersegmental Coordination of Side Kick Motion in Taekwondo (태권도 옆차기 동작의 인체관절과 분절사이의 협응 과정)

  • Yoon, Chang-Jin;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.179-189
    • /
    • 2008
  • The purpose of this study was to investigate interjoint and intersegmental coordination of lower segments in skill process. For the investigation, we examined the difference of resultant linear velocity of segments and angle vs angle graph. Novice subjects were 9 male middle school students who have never been experienced a taekwondo. We analyzed kinematic variables of Side Kick motion through videographical analysis. The conclusions were as follows. 1. Examining the graph of novice subjects' maximal resultant linear velocity of the thigh, shank, and foot segment, as it gets closer to the end of the training, the maximal resultant linear velocity in each segment increases which can be assumed to be a result of the effective momentum transfer between adjacent segments. 2 This research showed a sequential transfer from trunk, to thigh, and then to shank as it gets closer to the end of learning at intersegment angular velocity, and it also showed pattern of throwlike motion and pushlike motion. 3. In three dimension of flexion-extension, adduction-abduction and internal-external rotation of the thigh and shank segment, the angle-angle diagram of knee joint and of hip joint showed that dynamic change was indicated at the beginning of learning but stable coordination pattern was indicated like skilled subject as novice subjects became skilled.

Characteristics and prediction methods for tunnel deformations induced by excavations

  • Zheng, Gang;Du, Yiming;Cheng, Xuesong;Diao, Yu;Deng, Xu;Wang, Fanjun
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.361-397
    • /
    • 2017
  • The unloading effect from excavations can cause the deformation of adjacent tunnels, which may seriously influence the operation and safety of those tunnels. However, systematic studies of the deformation characteristics of tunnels located along side excavations are limited, and simplified methods to predict the influence of excavations on tunnels are also rare. In this study, the simulation capability of a finite element method (FEM) considering the small-strain characteristics of soil was verified using a case study. Then, a large number of FEM simulations examining the influence of excavations on adjacent tunnels were conducted. Based on the simulation results, the deformation characteristics of tunnels at different positions and under four deformation modes of the retaining structure were analyzed. The results indicate that the deformation mode of the retaining structure has a significant influence on the deformation of certain tunnels. When the deformation magnitudes of the retaining structures are the same, the influence degree of the excavation on the tunnel increased in this order: from cantilever type to convex type to composite type to kick-in type. In practical projects, the deformation mode of the retaining structure should be optimized according to the tunnel position, and kick-in deformation should be avoided. Furthermore, two methods to predict the influence of excavations on adjacent tunnels are proposed. Design charts, in terms of normalized tunnel deformation contours, can be used to quantitatively estimate the tunnel deformation. The design table of the excavation influence zones can be applied to determine which influence zone the tunnel is located in.

Unilateral Performance Comparison for Taekwondo Kicks between Dominant Leg and Non-Dominant Leg (우세한 다리와 비우세한 다리 사이의 태권도 발차기 비교)

  • Kim, Young-Kwan;Kim, Yoon-Hyuk
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 2010
  • The balanced performance of dominant and non-dominant leg is very important to Taekwondo sparring. The purpose of this study was to investigate whether elite Taekwondo athletes would have balanced biomechanical performance and intra-limb coordination in executing different types of Taekwondo kicks. Twelve athletes(more than 10 year practice experience) participated in this study and performed six basic kicks(i.e., the front, roundhouse, side, back, thrashing, and turning-back kick). Results indicated no statistical difference on response time, peak kicking velocity, single limb vertical jump height, and angle-angle plot between dominant leg and non-dominant leg(p>.05). In conclusion, elite Taekwondo athletes had equivalent ability between dominant leg and non-dominant leg in performing Taekwondo kicks. This might be an advantage to elite athletes for Taekwondo sparring because they could use both leg without any restriction.

Aesthetics of Karatedo as Security Guard Martial Art (경호무도로서 공수도의 미학)

  • Jeang, Il Hong
    • Convergence Security Journal
    • /
    • v.13 no.2
    • /
    • pp.67-73
    • /
    • 2013
  • This research is to define the Aesthetics of Karatedo as Security Guard Martial Art by explore the aesthetics of Karatedo being invigorated as security guard martial art. The first one is beauty of space. The offense and defense of Karatedo as Security Guard Martial art are to fill in, to come out and to move from side to side. It help to have higher judgment. Secondly, it is beauty of time. It is subjective time felt by people training Karatedo. The third on is beauty of unity. We can see formal beauty of unity such as white dogi or black suit of security guard and dynamic beauty of unity such as quick and slow, strong and soft or movement of hand and foot. The forth one is beauty of symmetry. It can be shown strongly by triangle or moving of team kata and triangle between athletes and referee at Kumite competition. The fifth one is beauty of balance. It can by shown well by continual Karatedo kick motion, jumping kick motion at Kumite, jumping motion, quick turning, or moving such as standing on one foot at kata. The sixth one is beauty of harmony. The whith Dogi and blue or red guard at Kumite competition shows harmony of yin and yang and we can see also various harmony such as strong and soft, quick and slow, or high and low at Kata competition. The seventh one is beauty of curve. We can see beauty of straight line and curve by watching line of hand and foot from starting point to ending point. Specially, moving line of white dogi shows strongly beauty. The eighth one is beauty of rhythm. The rhythm is specified in Kumite kata competition rules. It is also shown by basic step, left and right step, various moving of foot, continual offense of hand or continual rhythm of offense and defense. The last one is bezuty of ethics. It is manner, duty as human, and moderation being important in Karatedo.

LiDAR Ground Classification Enhancement Based on Weighted Gradient Kernel (가중 경사 커널 기반 LiDAR 미추출 지형 분류 개선)

  • Lee, Ho-Young;An, Seung-Man;Kim, Sung-Su;Sung, Hyo-Hyun;Kim, Chang-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • The purpose of LiDAR ground classification is to archive both goals which are acquiring confident ground points with high precision and describing ground shape in detail. In spite of many studies about developing optimized algorithms to kick out this, it is very difficult to classify ground points and describing ground shape by airborne LiDAR data. Especially it is more difficult in a dense forested area like Korea. Principle misclassification was mainly caused by complex forest canopy hierarchy in Korea and relatively coarse LiDAR points density for ground classification. Unfortunately, a lot of LiDAR surveying performed in summer in South Korea. And by that reason, schematic LiDAR points distribution is very different from those of Europe. So, this study propose enhanced ground classification method considering Korean land cover characteristics. Firstly, this study designate highly confident candidated LiDAR points as a first ground points which is acquired by using big roller classification algorithm. Secondly, this study applied weighted gradient kernel(WGK) algorithm to find and include highly expected ground points from the remained candidate points. This study methods is very useful for reconstruct deformed terrain due to misclassification results by detecting and include important terrain model key points for describing ground shape at site. Especially in the case of deformed bank side of river area, this study showed highly enhanced classification and reconstruction results by using WGK algorithm.