• Title/Summary/Keyword: SI cycle

Search Result 603, Processing Time 0.029 seconds

Two New SiO Maser Sources in High-Mass Star-Forming Regions

  • Cho, Se-Hyung;Yun, Youngjoo;Kim, Jaeheon;Liu, Tie;Kim, Kee-Tae;Choi, Minho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.46.3-46.3
    • /
    • 2016
  • We present the ALMA Cycle 2 results "Two New SiO Maser Sources in High-Mass Star-Forming Regions" which was published in the Astrophysical Journal (Vol. 826, P157, 2016). Silicon monoxide (SiO) masers are rare in star forming regions, with the exception of five known SiO maser sources. However, we detected two new SiO maser sources from infrared loud clumps of the high-mass star forming regions G19.61-0.23 and G75.78+0.34 using the KVN single dish. High angular resolution observations with ALMA and JVLA toward G19.61-0.23 suggest that the deeply embedded young stellar object (YSO) of SMA 1 is powering the SiO masers. In addition, the SiO v=1, J=1-0 line shows four spike features while the v=2 maser shows combined features of one spike and broad wing components, implying energetic activities of the YSO of SMA 1 in the G19.61-0.23 hot molecular core. The SiO v=0, J=2-1 emission shows bipolar outflows in NE-SW direction with respect to the center of the SiO maser source. A high angular resolution map of the SiO v=1, J=2-1 maser in G75.78+0.34 shows that the SiO maser is associated with the CORE source at the earliest stage of high-mass star formation. Therefore, the newly detected SiO masers and their associated outflows will provide good probes for investigating this early high-mass star formation.

  • PDF

Electrochemical Behavior of Si/Cu/Graphite Composite Anode for Lithium Secondary Battery (리튬이차전지용 Si/Cu/Graphite 복합체 음극의 전기화학적 거동)

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.162-166
    • /
    • 2009
  • The carbon-coated Si/Cu powders were synthesized by mechanical ball-milling and hydrocarbon gas decomposition methods at high temperature. The carbon-coated Si/Cu powder was used as anode for lithium secondary battery and its electrochemical behavior was investigated. In addition, the carbon-coated Si/Cu/graphite composite anode material was prepared using natural graphite powder and their electrochemical characteristics were compared with natural graphite anode. The specific capacity of carbon-coated Si/Cu anode increased to the initial 10 cycles. The carbon-coated Si/Cu/graphite composite anode exhibited the reversible specific capacity of 450mAh/g and the first cycle efficiency of 81.3% at $0.25mA/cm^2$. The cycling performance of the composite anode was similar to that of pure graphite anode except the reversible specific capacity value.

Synthesis of Si-CNT-C Composites and Their Application to Lithium Ion Battery (실리콘-탄소나노튜브-탄소 복합체 제조 및 리튬이온전지 응용)

  • Kim, Chan Mi;Kim, Sun Kyung;Chang, Hankwon;Kil, Dae sup;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.42-48
    • /
    • 2018
  • Silicon has attracted extensive attention due to its high theoretical capacity, low discharge potential and non-toxicity as anode material for lithium ion batteries. In this study, Si-CNT-C composites were fabricated for use as a high-efficiency anode material in a lithium ion battery. Aerosol self-assembly and post-heat treatment processes were employed to fabricate the composites. The morphology of the Si-CNT-C composites was spherical and an average particle size was $2.72{\mu}m$. The size of the composite increased as concentration of Si and CNT increased in the precursor solution. In the Si-CNT-C composites, CNT and C carbonized from glucose were attached to the surface of Si particles. Electrochemical measurement showed that the cycle performance of Si-CNT-C composites was better than that of silicon particles.

Enhanced Si based negative electrodes using RF/DC magnetron sputtering for bulk lithium ion batteries

  • Hwang, Chang-Muk;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.277-277
    • /
    • 2010
  • The capacity of the carbonaceous materials reached ca. $350\;mAhg^{-1}$ which is close to theorestical value of the carbon intercalation composition $LiC_6$, resulting in a relatively low volumetric Li capacity. Notwithstanding the capacities of carbon, it will not adjust well to the need so future devices. Silicon shows the highest gravimetric capacities (up to $4000\;mAhg^{-1}$ for $Li_{21}Si_5$). Although Si is the most promising of the next generation anodes, it undergoes a large volume change during lithium insertion and extraction. It results in pulverization of the Si and loss of electrical contact between the Si and the current collector during the lithiation and delithiation. Thus, its capacity fades rapidly during cycling. We focused on electrode materials in the multiphase form which were composed of two metal compounds to reduce the volume change in material design. A combination of electrochemically amorphous active material in an inert matrix (Si-M) has been investigated for use as negative electrode materials in lithium ion batteries. The matrix composited of Si-M alloys system that; active material (Si)-inactive material (M) with Li; M is a transition metal that does not alloy with Li with Li such as Ti, V or Mo. We fabricated and tested a broad range of Si-M compositions. The electrodes were sputter-deposited on rough Cu foil. Electrochemical, structural, and compositional characterization was performed using various techniques. The structure of Si-M alloys was investigated using X-ray Diffractometer (XRD) and transmission electron microscopy (TEM). Surface morphologies of the electrodes are observed using a field emission scanning electron microscopy (FESEM). The electrochemical properties of the electrodes are studied using the cycling test and electrochemical impedance spectroscopy (EIS). It is found that the capacity is strongly dependent on Si content and cycle retention is also changed according to M contents. It may be beneficial to find materials with high capacity, low irreversible capacity and that do not pulverize, and that combine Si-M to improve capacity retention.

  • PDF

A Study of Cadmium Recovery from LCC Crucible Using Solid-liquid Separation Method (고-액 분리법을 이용한 LCC 도가니에서의 카드뮴 회수에 관한 연구)

  • Park, Dae-Yeob;Kim, Tack-Jin;Kim, Jiyong;Kim, Kyung-Ryang;Kim, Si-Hyung;Shim, Joon-Bo;Peak, Seungwoo;Ahn, Do-Hee
    • Journal of Advanced Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.431-436
    • /
    • 2011
  • This study was carried out to reduce the problem during distillation process, which separate U, TRU (TRans Uranium) metal electro deposit, Cd and LiCl-KCl eutectic salt generating from LCC (Liquid Cadmium Cathode) electro winning process. The cadmium recovering apparatus was manufactured to separate for each metal using solid-liquid separation method. The apparatus consists of the first sieve for the separation of U and TRU metal electrodeposit, the second sieve for the separation of LiCl-KCl eutectic salt, cadmium collection basket, and a heating furnace. In addition, the size of each sieve is 2 mm to 3 mm. In this experiment, a metal wire was employed to replace TRU metal electrodeposit and U, which exist actually in a LCC crucible. In the solid state, The LiCl-KCl is separated at 340℃ at which the solid and the liquid of the remaining cadmium and LiCl-KCl eutectic salt coexists in each, after the metal wire separated at 500℃. As a result, it seems that it would be beneficial to set the processing condition in the distillation process with the additional treatment process of cadmium and LiCl-KCl eutectic salt.

Electrochemical Characteristics of Lithium Ion Battery Anode Materials of Graphite/SiO2 (리튬이차전지 음극재로서 Graphite/SiO2 합성물의 전기화학적 특성)

  • Ko, Hyoung Shin;Choi, Jeong Eun;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.592-597
    • /
    • 2014
  • The graphite/$SiO_2$ composites as anode materials for lithium-ion batteries were prepared by sol-gel method to improve the graphite's electrochemical characteristics. The prepared graphite/$SiO_2$ composites were analysed by XRD, FE-SEM and EDX. The graphite surface modified by silicon dioxide showed several advantages to stabilize SEI layer. The electrochemical characteristics were investigated for lithium ion battery using graphite/$SiO_2$ as the working electrode and Li metal as the counter electrode. Electrochemical behaviors using organic electrolytes ($LiPF_6$, EC/DMC) were characterized by charge/discharge, cycle, cyclic voltammetry and impedance tests. The lithium ion battery using graphite/$SiO_2$ electrodes had better capacity than that of using graphite electrodes and was able to deliver a discharge capacity with 475 mAh/g at a rate of 0.1 C. Also, the capacity retention ratio of the modified graphite reaches 99% at a rate of 0.8 C.

Knockdown of a Proliferation-inducing Ligand (PRIL) Suppresses the Proliferation of Gastric Cancer Cells

  • Cui, Jiu-Wei;Li, Yan;Wang, Chang;Yao, Cheng;Li, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.633-636
    • /
    • 2012
  • Purpose: PRIL (proliferation-inducing ligand) is a newly identified member of the tumor necrosis factor (TNF) family and modulates death ligand-induced apoptosis. Here, we investigated the effect of PRIL on cellular characteristics relating to tumor progression in human gastric cancer. Method: Recombinant lentivirus containing PRIL siRNA was constructed and then infected MGC803 and SGC7901 gastric cancer cells. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] colony formation and cell cycle analysis were used to study the effect of PRIL knockdown on gastric cancer cell proliferation. Results: PRIL expression in lentivirus infected cells was significantly reduced as evidenced by quantitative real-time PCR. Cell viability and colony formation of MGC803 and SGC7901 cells were significantly hampered in PRIL knock-down cells. Moreover, the cell cycle was arrested at G2/M phase, elucidating the mechanism underlying the inhibitory effect of siRNA on cell proliferation. Conclusions: Our study indicated that PRIL functions in promoting cell growth, and lentivirus-mediated PRIL gene knockdown might be a promising strategy in the treatment of gastric cancer.

ZnO thin film deposition at low temperature using ALD (ALD를 이용한 저온에서의 ZnO 박막 증착)

  • Kim, H.S.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.3
    • /
    • pp.205-209
    • /
    • 2007
  • ZnO thin films were deposited on a Si wafer and a soda lime glass using atomic layer deposition(ALD). The substrate temperature were between $130^{\circ}C{\sim}150^{\circ}C$. The deposition rate of the ZnO film was measured to be $2.72{\AA}$ per cycle. The films were analyzed using field emission scanning electron microscopy(FESEM), X-ray diffractometer(XRD), and Auger electron spectroscopy(AES). Impurity-free ZnO thin films were obtained and the crystallinity was found to be dependant upon the substrate temperature.

Fabrication of Tungsten Probe Tips for AFM using Electrochemical Etching (전기화학적 에칭법을 이용한 AFM용 텅스텐 탐침 제작에 관한 연구)

  • Han, Gue-Bum;Jang, Hyuna;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.213-217
    • /
    • 2013
  • As commercial atomic force microscopy (AFM) probes made of Si and $Si_3N_4$ have low stiffness, it is difficult to induce sufficient elastic deformation on the surface of a specimen in a tapping mode. Therefore, high-guality phase contrast images can not obtained. On the other hand, a tungsten AFM probe has relatively higher stiffness than a commercial AFM probe. Accordingly, it is expected to provide an enhanced phase contrast image, which is an effective tool for achieving a better understanding of the micromechanical properties of worn surfaces and wear mechanisms. In this study, on electrochemical etching method was optimized to fabricate tungsten probe tips for an AFM. Electrochemical etching was performed by applying pulse waves with a 20% duty cycle at various voltages instead of only a DC voltage, which has been commonly used.