DOI QR코드

DOI QR Code

Electrochemical Behavior of Si/Cu/Graphite Composite Anode for Lithium Secondary Battery

리튬이차전지용 Si/Cu/Graphite 복합체 음극의 전기화학적 거동

  • Kim, Hyung-Sun (Battery Research Center, Korea Institute of Science and Technology) ;
  • Chung, Kyung-Yoon (Battery Research Center, Korea Institute of Science and Technology) ;
  • Cho, Won-Il (Battery Research Center, Korea Institute of Science and Technology) ;
  • Cho, Byung-Won (Battery Research Center, Korea Institute of Science and Technology)
  • 김형선 (한국과학기술연구원 이차전지연구센터) ;
  • 정경윤 (한국과학기술연구원 이차전지연구센터) ;
  • 조원일 (한국과학기술연구원 이차전지연구센터) ;
  • 조병원 (한국과학기술연구원 이차전지연구센터)
  • Published : 2009.05.30

Abstract

The carbon-coated Si/Cu powders were synthesized by mechanical ball-milling and hydrocarbon gas decomposition methods at high temperature. The carbon-coated Si/Cu powder was used as anode for lithium secondary battery and its electrochemical behavior was investigated. In addition, the carbon-coated Si/Cu/graphite composite anode material was prepared using natural graphite powder and their electrochemical characteristics were compared with natural graphite anode. The specific capacity of carbon-coated Si/Cu anode increased to the initial 10 cycles. The carbon-coated Si/Cu/graphite composite anode exhibited the reversible specific capacity of 450mAh/g and the first cycle efficiency of 81.3% at $0.25mA/cm^2$. The cycling performance of the composite anode was similar to that of pure graphite anode except the reversible specific capacity value.

탄소 피복된 Si/Cu 분말을 기계적인 볼-밀링(ball-milling) 방법과 고온에서 탄화수소가스 분해 방법에 의해 제조하여 리튬이차전지용 음극으로 사용하였고 이에 대한 전기화학적 거동을 조사하였다. 천연흑연(natural graphite)을 이용하여 탄소 피복된 Si/Cu/graphite 복합체 음극소재를 제조하였으며 천연흑연 음극소재와 전기화학적 특성을 비교하였다. 탄소 피복된 Si/Cu 음극의 가역적 비용량은 초기 10 싸이클까지 지속적인 증가를 나타냈다. 탄소 피복된 Si/Cu/graphite 복합체 음극의 가역적 비용량은 $0.25mA/cm^2$ 전류밀도에서 450mAh/g이고 초기 싸이클 효율은 81.3%로 나타났다. 복합체 음극의 싸이클 성능은 가역적인 비용량값을 제외하고 천연흑연 음극과 유사하게 나타났다.

Keywords

References

  1. A. Netz, R. A. Huggins, and W. Weppner, 'The formation and properties of amorphous silicon as negative electrode reactant in lithium systems', J. Power Sources, 119-121, 95 (2003) https://doi.org/10.1016/S0378-7753(03)00132-0
  2. I. Kim, G. E. Blomgren, and P. N. Kumta, 'Nanostructured Si/Ti$B_{2}$ Composite Anodes for Li-Ion Batteries', Electrochemical and Solid-State Letters, 6, A157 (2003) https://doi.org/10.1149/1.1584212
  3. Y. Liu, K. Hanai, J. Yang, N. Imanishi, A. Hirano, and Y. Takeda, 'Silicon/carbon composite as anode materials for lithium-ion batteries', Electrochemical and Solid-State Letters, 7, A369 (2003) https://doi.org/10.1149/1.1795031
  4. P. Zuo, G. Yin, X. Hao, Z. Yang, Y. Ma, and Z. Gao, 'Synthesis and electrochemical performance of Si/Cu/and Si/Cu/graphite composite anode', Materials Chemistry and Physics, 104, 444 (2007) https://doi.org/10.1016/j.matchemphys.2007.04.001
  5. G. X. Wang, J. H. Ahn, M.J. Lindsay, L. Sun, D. H. Bradhurst, S. X. Dou, and H. K. Liu, 'Graphite-Tin composites as anode materials for lithium-ion batteries', J. Power Sources, 97-98, 211 (2001) https://doi.org/10.1016/S0378-7753(01)00619-X
  6. H. Kim, K. Chung, and B. Cho, 'Electrochemical properties of carbon-coated Si/B composite anode for lithium ion batteries', J. Power Sources, 189, 108 (2009) https://doi.org/10.1016/j.jpowsour.2008.10.045
  7. N. Dimov, S. Kugino, and M. Yoshio, 'Carbon-coated silicon as anode material for lithium ion batteries : advantages and limitations', Electrochimica Acta, 48, 1579 (2003) https://doi.org/10.1016/S0013-4686(03)00030-6
  8. D. Q. Shi, J. P. Tu, Y. F. Yuan, H. M. Wu, Y. Li, and X. B. Zhao, 'Preparation and electrochemical properties of mesoporous Si/Zr$O_{2}$ nanocomposite film as anode material for lithium ion battery', Electrochemistry Communications, 8, 1610 (2006) https://doi.org/10.1016/j.elecom.2006.05.014
  9. H. Kim, K. Chung, and B. Cho, 'Electrochemical Properties and Structural Analysis of Carbon-Coated Silicon Anode for Lithium Secondary Batteries', J. Korean Electrochemical Society, 11, 37 (2008) https://doi.org/10.5229/JKES.2008.11.1.037
  10. M. N. Obrovac and L. Christensen, 'Structural Changes in Silicon Anodes during Lithium Insertion/Extraction', Electrochemical and Solid-State Letters, 7, A93 (2004) https://doi.org/10.1149/1.1652421
  11. X. Q. Yang, J. McBreen, W. S. Yoon, M. Yoshio, H. Wang, K. Fukuda, and T. Umeno, 'Structural studies of the new carbon-coated silicon anode materials using synchrotron in situ XRD', Electrochemistry Communications, 4, 893 (2002) https://doi.org/10.1016/S1388-2481(02)00483-6
  12. H. Li, X. Huang, L. Chen, G. Zhou, Z. Zhang, D. Yu, Y. Mo, and N. Pei, 'The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature', Solid State Ionics, 135, 181 (2000) https://doi.org/10.1016/S0167-2738(00)00362-3