• Title/Summary/Keyword: SI cortex

Search Result 32, Processing Time 0.02 seconds

Distribution and Characterization of Heavy Metals in Human Kidney Cortex and Kidney Medulla (인체 신장피질과 신장수질에서 중금속류의 분포 및 특성)

  • 유영찬;이상기;양자열;김기욱;이수연;정규혁
    • YAKHAK HOEJI
    • /
    • v.45 no.5
    • /
    • pp.460-467
    • /
    • 2001
  • Heavy metals, such as Al, As, Cd, Cr Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, Si, Sn, V and Zn, were analysed on kidney cortex and medulla of Korean obtained from 154 forensic medical autopsy cadavers. Heavy metals were analysed by inductively coupled plasma atomic emission spectrometry In kidney cortex, the concentrations of Al, Cd, Cu, Mn, Mo, Pb, Se, Si and Zn were significantly higher than in the kidney medulla (Cd, Cu, Mn, Mo, Zn : p<0.01, AA, Pb, Se, Si : p<0.05). No significant local differences were found between kidney cortex and kidney medulla in the concentrations of As, Cr Fe, Hg, Ni, Sn and V. In kidney cortex and kidney medulla, Cd concentrations correlated positively with age, but Mn concentrations correlated negatively with age. A significantly positive correlation between Cd and Zn, Cd and Cu, Zn and Cu, Al and Si, Se and As was found in kidney cortex and kidney medulla. A significantly positive correlation between Hg and Se was only observed in kidney cortex. These results indicate that the distribution of hazardous heavy metals is similar to that of essential elements in the tissues.

  • PDF

Interhemispheric Modulation on Afferent Sensory Transmission to the Ventral Posterior Medial Thalamus by Contralateral Primary Somatosensory Cortex

  • Jung, Sung-Cherl;Choi, In-Sun;Cho, Jin-Hwa;Kim, Ji-Hyun;Bae, Yong-Chul;Lee, Maan-Gee;Shin, Hyung-Cheul;Choi, Byung-Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.3
    • /
    • pp.129-132
    • /
    • 2004
  • Single unit responses of the ventral posterior medial (VPM) thalamic neurons to stimulation were monitored in anesthetized rats during activation of contralateral primary somatosensory (SI) cortex by GABA antagonist. The temporal changes of afferent sensory transmission were quantitatively analyzed by poststimulus time histogram (PSTH). Mainly, afferent sensory transmission to VPM thalamus was facilitated (15 neurons of total 23) by GABA antagonist (bicuculline) applied to contralateral cortex, while 7 neurons were suppressed. However, when ipsilateral cortex was inactivated by GABA agonist, musimol, there was significant suppression of afferent sensory transmission of VPM thalamus. This suppressed responsiveness by ipsilateral musimol was not affected by bicuculline applied to contralateral cortex. These results suggest that afferent transmission to VPM thalamus may be subjected to the interhemispheric modulation via ipsilateral cortex during inactivation of GABAergic neurons in contralateral SI cortex.

Changes of Afferent Transmission to the SI Cortex by Transient Co-Stimulation of Receptive Field Center and Outside in Anesthetized Rats

  • Yang, Yu-Mi;Lim, Sa-Bina;Won, Chung-Kil;Shin, Hyung-Cheul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 2001
  • We have characterized the aftereffects of impulse activities on the transmission of afferent sensory to the primary somatosensory (SI) cortex of the anesthetized rats (n=22). Following conditioning stimulation (CS, 10 sec, either 5 Hz or 200 Hz) to the receptive field (RF), quantitative determination of the changes of afferent sensory transmission was done by generating post-stimulus time histogram of unit response to the testing stimulation (TS, at 0.5 Hz) to the RF center (RFC) for 60 min. In one group of experiments, CS was delivered to the RF center (RFC). In another group of experiments, CSs were simultaneously given to both RFC and RF outside (RFO, either forepaw or hindpaw). CS of 5 Hz to RFC exerted irreversible facilitation of sensory transmissions evoked by TS. Simultaneous CSs of 5 Hz to RFC and hindpaw RFO exerted reversible suppression of afferent transmission. However, CSs of 5 Hz to RFC and forepaw RFO did not significantly altered afferent sensory transmission to SI cortex neurons. CS of 200 Hz to RFC exerted irreversible suppression of sensory transmissions up to 60 min of experimental period. Simultaneous CSs of 200 Hz to RFC and RFO did not significantly altered afferent sensory transmission to SI cortex neurons. The profiles of CS-induced modulation of afferent sensory transmission were significantly different between two CS conditions. Thus, this study suggests that activity-dependent modulation of afferent transmission from a RF center to the SI cortex may be significantly altered when remote body part was simultaneously activated.

  • PDF

Effect of electro-acupuncture ST36 on altered transmission of afferent somatosensory information caused by amyloid-β (전침(電鍼)이 amyloid-β에 의한 구심성 체감각 신경정보전달 변화에 미치는 영향)

  • Lee, Hyun-jong;Kim, Chang-hwan;Lee, Yun-ho
    • Journal of Acupuncture Research
    • /
    • v.20 no.4
    • /
    • pp.145-156
    • /
    • 2003
  • Objective : This study is to investigate the effect of electro-acupuncture ST36 on altered transmission of afferent somatosensory information caused by amyloid-${\beta}$(A-${\beta}$) that caused Alzheimer's disease. Methods : The effects of topical application of A-${\beta}$, A-${\beta}$ with ST36, aggregated A-${\beta}$(aA-${\beta}$), aA-${\beta}$ with ST36 and ST36 on the afferent sensory transmission to the neurons in the primary somatosensory(SI) cortex was observed in anesthetized rats. Quantitative determination of the effects of A-${\beta}$, A-${\beta}$ with ST36, aA-${\beta}$, aA-${\beta}$ with ST36 and ST36 was made by generating poststimulus time histogram of evoked response of individual cortical neuron by electrical stimulation of the receptive located in peripheral area(forepaw) Results : The results obtained in present study were summerized as follow : 1. Application of physiological concentrative 0.5 nM A-${\beta}$ caused afferent sensory transmission of SI cortex facilitated. 0.5 nM A-${\beta}$ with ST36 exerted much stronger effects than 0.5 nM A-${\beta}$ alone. 2. Application of $10{\mu}M$ A-${\beta}$ caused afferent sensory transmission of SI cortex unchangeable. But $10{\mu}M$ A-${\beta}$ with ST36 is facilitated at 30 min of post-drug period 3. Application of $10{\mu}M$ aA-${\beta}$ caused afferent sensory transmission of SI cortex diminished. $10{\mu}M$ aA-${\beta}$ with ST36 is diminished after 15min of post-drug period but is facilitated after 75min.

  • PDF

Cocaine-induced Changes in Functional Connectivities between Simultaneously Recorded Single Neurons in the SI Cortex and the VPL Thalamus of Conscious Rats

  • Shin, Hyung-Cheul;Park, Hyoung-Jin;Oh, Yang-Seok;Chapin, John K.
    • The Korean Journal of Physiology
    • /
    • v.27 no.1
    • /
    • pp.79-91
    • /
    • 1993
  • The present study was carried out to determine the effects of cocaine (0.25, 1.0, 10.0 mg/kg, i.p.) on the interactions between spontaneously active neurons within ensembles of simultaneously recorded neurons in the primary somatosensory cortex (Sl, n= 20) and the ventroposterolateral (VPL, n= 16) thalamic nucleus of awake rats. Spike triggered cross correlation histograms were constructed between pairs of simultaneously recorded neurons. Among 101 neuronal pairs analyzed, 22.7% showed correlations indicative of various functional connections among the cortical cells, two corticothalamic interactions and one thalamocortical excitatory interaction. There were also 15 cofiring activities among SI cortical cells. These functional connectivities appeared to be modulated (weakened, abolished, or strengthened) during the 5 to 30 min following cocaine injection. The effects of saline were tested as a control, but it did not appear to alter the functional connectivities. In general, cocaine-induced changes of the functional interactions were mainly due to the concomitant alterations of the uncorrelated background discharges. These results suggest that the biphasic effects of cocaine on the spontaneously established neural networks among the SI cortical and the VPL thalamic cells of conscious rat were mainly indirect. However, various changes of the functional interactions by different doses of cocaine appeared to be a possible neural network mechanism for the cocaine induced modulation of afferent somatosensory transmission.

  • PDF

Screening of Anti-HIV-1 Activity of Natural Products by MTT Assay (MTT Assay에 의한 천연물질의 항 HIV-1 활성 검색)

  • Lee, Joo-Shil;Nam, Jeong-Gu;Kang, Chon;Lee, Hong-Rae;Lee, Young-Jong;Shin, Yung-Oh
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.1
    • /
    • pp.87-95
    • /
    • 1997
  • Methanol and/or boiling water extraction of 201 natural products and subsequent MTT assay using MT-4 cell line was carried out to screen the anti-HIV-1 activity. Among 97 methanol extracts, 7 extracts from Chrysanthemi Indicium Flos, Magnoliae Cortex, Machili Cortex, Reynoutriae Rhizoma, Lithospermi Radix, Agastachis Herba, and Chaenomelis Fructus showed anti-HIV-1 activity and their SI value were 2.25 to 5.77. In addition, among 119 boiling water extracts, 10 extracts from Lonicerae Caulis et Foloium, Elsholtziae Herba, Leonuri Herba, Portulacae Herba, Schizonepetae Herba, Curcumae Rhizoma, Amomi Cardamomi Fructus, Cirsii Radix et Herba, Carpesii Herba, and Siegesbeckiae Herba showed anti-HIV-1 activity and their SI value were 1.30 to 7.64. Methanol extracts of above seven natural products were fractionated and the anti-HIV-1 activity of each fraction was examined. Extraction was carried out with hexane, chloroform, butanol, and water to trace active anti-HIV-1 componets. As a result, the water fraction of Magnoliae Cortex, Machili Cortex, Reynoutriae Rhizoma, Agastachis Herba, Chaenomelis Fructus and the butanol fraction of Chrysanthemi Indicium Flos, Reynoutriae Rhizoma showed anti-HIV-1 activity and their SI value were 1.40 to 8.02. We could reach a conclusion that studies to trace the anti-HIV-1 active component of each natural products in further fractionation and to identify its structure by Infrared spectroscopy, NMR spectroscopy and gel permeation chromatography were needed.

  • PDF

Effects of Jeonglyukdaejosapaetang on the Pulmonary Edema of the Rats Induced by the Herbicide, Paraquat (정역대조사폐탕(大棗瀉肺湯)이 Paraquat로 유발(誘發)시킨 흰쥐의 폐수종(肺水腫)에 미치는 영향(影響))

  • Kang Byung-Ku;Lee Si-Hyeong
    • Herbal Formula Science
    • /
    • v.8 no.1
    • /
    • pp.225-239
    • /
    • 2000
  • Pulmonary edema is a disease involving the principal symptoms: dyspnea, bloody phlegm, asthma, cough, etc. According to oriental medical references, Jeomglyukdaejosapaetang (J.D.T) was efficacious for dropsy, cough, dysnea, etc, so it was thought to be used for remedy of pulmonary edema. Therefore experimental study was performed to investigate the effects of J.C.T on pulmonary edema of the rats induced by the herbicide, paraquat.Thus the survival rats, respiratory rats, lung weights and histopathological view of the lungs of rats were studied. The results are as follows. 1. The survival rates at 72hours of the rats injected with paraquat and treated with J.D.T increased in B group(J.D.T + Cortex Lycii Radicis + Cortex mori). The others were not different with the control. 2. The respiratory rates of the rats which survived 72hours later significantly decreased in B group(J.D.T + Cortex Lycii Radicis + Cortex mori). 3. The lung weights of the rats which survived for 72hours later significantly decreased in B group(J.B.T + Cortex Lycii Radicis + Cortex mori). 4. The histopathological views of the lungs of rats induced by paraquat were seen severe hemorrhage, edema and some broken alveoli in control group. But B group(J.D.T + Cortex Lycii Radicis + Cortex mori) were seen little hemorrhage and interstitial hyperplasia. According to the above results, J.D.T + Cortex Lycii Radicis + Cortex mort is effective on the remedy for pulmonary edema of rats induced by paraquat.

  • PDF

The Cortical Activation by Functional Electrical Stimulation, Active and Passive Movement (능동 및 수동 운동과 기능적 전기자극에 의한 대뇌 피질의 활성화)

  • Kwon, Yong-Hyun;Jang, Sung-Ho;Han, Bong-Soo;Choi, Jin-Ho;Lee, Mi-Young;Chang, Jong-Sung
    • Physical Therapy Korea
    • /
    • v.12 no.2
    • /
    • pp.73-80
    • /
    • 2005
  • We investigated the activation of the cerebral cortex during active movement, passive movement, and functional electrical stimulation (FES), which was provided on wrist extensor muscles. A functional magnetic resonance imaging study was performed on 5 healthy volunteers. Tasks were the extension of right wrist by active movement, passive movement, and FES at the rate of .5 Hz. The regions of interest were measured in primary motor cortex (M1), primary somatosensory cortex (SI), secondary somatosensory cortex (SII), and supplementary motor area (SMA). We found that the contralateral SI and SII were significantly activated by all of three tasks. The additional activation was shown in the areas of ipsilateral S1 (n=2), and contralateral (n=1) or ipsilateral (n=2) SII, and bilateral SMA (n=3) by FES. Ipsilateral M1 (n=1), and contralateral (n=1) or ipsilateral SII (n=1), and contralateral SMA (n=1) were activated by active movement. Also, Contralateral SMA (n=3) was activated by passive movement. The number of activated pixels on SM1 by FES ($12{\pm}4$ pixels) was smaller than that by active movement ($18{\pm}4$ pixels) and nearly the same as that by passive movement ($13{\pm}4$ pixels). Findings reveal that active movement, passive movement, and FES had a direct effect on cerebral cortex. It suggests that above modalities may have the potential to facilitate brain plasticity, if applied with the refined-specific therapeutic intervention for brain-injured patients.

  • PDF

Neural Activation in the Somatosensory Cortex by Electrotactile Stimulation of the Fingers: A Human fMRI Study

  • Seok, Ji-Woo;Jang, Un-Jung;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.395-405
    • /
    • 2014
  • Objective: The aim of this study is to investigate 1) somatotopic arrangement of the second and third fingers in SI area 2) difference of neural activation in the SI area produced by stimulation with different frequencies 3) correlation between the intensity of tactile perception by different stimulus intensity and the level of brain activation measurable by means of fMRI. Background: Somatosensory cortex can obtain the information of environmental stimuli about "where" (e.g., on the left palm), "what" (e.g., a book or a dog), and "how" (e.g., scrub gently or scrub roughly) to organism. However, compared to visual sense, the neural mechanism underlying the processing of specific electrotactile stimulus is still unknown. Method: 10 right-handed subjects participated in this study. Non-painful electrotactile stimuli were delivered to two different finger tips of right hand. Functional brain images were collected from 3.0T MRI using the single-shot EPI method. The scanning parameters were as follows: TR and TE were 3000, 35ms, respectively, flip angle 60, FOV $24{\times}24cm$, matrix size $64{\times}64$, slice thickness 4mm (no gap). SPM5 was used to analyze the fMRI data. Results: Significant activations produced by the stimulation were found in the SI, SII, the subcentral gyrus, the precentral gyrus, and the insula. In all participants, statistically significant activation was observed in the contralateral SI area and the bilateral SII areas by the stimulation on the fingers but ipsilaterally dominant. The SI area representing the second finger generally located in the more lateral and inferior side than that of the third finger across all the subjects. But no difference in brain area was found for the stimulation of the fingers by different frequencies. And two typical patterns were observed on the relationship between the perceived psychological intensity and the amount of voxels in the primary sensory cortex during the stimulation. Conclusion: It was possible to discriminate the representation sites in the SI by electrotactile stimulation of digit2 and digit3. But we could not find the differences of the brain areas according to different stimulation frequencies from 3 to 300Hz. Application: The results of the study can provide a deeper understanding of somatosensory cortex and offer the information for tactile display for blinds.

Korean Red Ginseng and Rb1 restore altered social interaction, gene expressions in the medial prefrontal cortex, and gut metabolites under post-weaning social isolation in mice

  • Oh Wook Kwon;Youngja Hwang Park;Dalnim Kim;Hyog Young Kwon;Hyun-Jeong Yang
    • Journal of Ginseng Research
    • /
    • v.48 no.5
    • /
    • pp.481-493
    • /
    • 2024
  • Background: Post-weaning social isolation (SI) reduces sociability, gene expressions including myelin genes in the medial prefrontal cortex (mPFC), and alters microbiome compositions in rodent models. Korean Red Ginseng (KRG) and its major ginsenoside Rb1 have been reported to affect myelin formation and gut metabolites. However, their effects under post-weaning SI have not been investigated. This study investigated the effects of KRG and Rb1 on sociability, gene expressions in the mPFC, and gut metabolites under post-weaning SI. Methods: C57BL/6J mice were administered with water or KRG (150, 400 mg/kg) or Rb1 (0.1 mg/kg) under SI or regular environment (RE) for 2 weeks during the post-weaning period (P21-P35). After this period, mice underwent a sociability test, and then brains and ceca were collected for qPCR/immunohistochemistry and nontargeted metabolomics, respectively. Results: SI reduced sociability compared to RE; however, KRG (400 mg/kg) and Rb1 significantly restored sociability under SI. In the mPFC, expressions of genes related to myelin, neurotransmitter, and oxidative stress were significantly reduced in mice under SI compared to RE conditions. Under SI, KRG and Rb1 recovered the altered expressions of several genes in the mPFC. In gut metabolomics, 313 metabolites were identified as significant among 3027 detected metabolites. Among the significantly changed metabolites in SI, some were recovered by KRG or Rb1, including metabolites related to stress axis, inflammation, and DNA damage. Conclusion: Altered sociability, gene expression levels in the mPFC, and gut metabolites induced by two weeks of post-weaning SI were at least partially recovered by KRG and Rb1.