• Title/Summary/Keyword: SHM (Structural Health Monitoring)

Search Result 314, Processing Time 0.026 seconds

A new method for optimal selection of sensor location on a high-rise building using simplified finite element model

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.671-684
    • /
    • 2011
  • Deciding on an optimal sensor placement (OSP) is a common problem encountered in many engineering applications and is also a critical issue in the construction and implementation of an effective structural health monitoring (SHM) system. The present study focuses with techniques for selecting optimal sensor locations in a sensor network designed to monitor the health condition of Dalian World Trade Building which is the tallest in the northeast of China. Since the number of degree-of-freedom (DOF) of the building structure is too large, multi-modes should be selected to describe the dynamic behavior of a structural system with sufficient accuracy to allow its health state to be determined effectively. However, it's difficult to accurately distinguish the translational and rotational modes for the flexible structures with closely spaced modes by the modal participation mass ratios. In this paper, a new method of the OSP that computing the mode shape matrix in the weak axis of structure by the simplified multi-DOF system was presented based on the equivalent rigidity parameter identification method. The initial sensor assignment was obtained by the QR-factorization of the structural mode shape matrix. Taking the maximum off-diagonal element of the modal assurance criterion (MAC) matrix as a target function, one more sensor was added each time until the maximum off-diagonal element of the MAC reaches the threshold. Considering the economic factors, the final plan of sensor placement was determined. The numerical example demonstrated the feasibility and effectiveness of the proposed scheme.

Sensor System for Multi-Point Monitoring Using Bending Loss of Single Mode Optical Fiber (단일 모드 광섬유의 굽힘손실을 이용한 다점 측정 센서 시스템)

  • Kim, Heon-Young;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • Applications of smart sensors have been extended to safety systems in the aerospace, transportation and civil engineering fields. In particular, structural health monitoring techniques using smart sensors have gradually become necessary and have been developed to prevent dangers to human life and damage to assets. Generally, smart sensors are based on electro-magnets and have several weaknesses, including electro-magnetic interference and distortion. Therefore, fiber optic sensors are an outstanding alternative to overcome the weaknesses of electro-magnetic sensors. However, they require expensive devices and complex systems. This paper proposes a new, affordable and simple sensor system that uses a single fiber to monitor pressures at multiple-points. Moreover, a prototype of the sensor system was manufactured and tested for a feasibility study. Based on the results of this experimental test, a relationship was carefully observed between the bend loss conditions and light-intensity. As a result, it was shown that impacts at multiple-points could be monitored.

Intelligent Bridge Safety Prediction Edge System (지능형 교량 안전성 예측 엣지 시스템)

  • Jinhyo Park;Taejin Lee;Yong-Geun Hong;Joosang Youn
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.12
    • /
    • pp.357-362
    • /
    • 2023
  • Bridges are important transportation infrastructure, but they are subject to damage and cracking due to various environmental factors and constant traffic loads, which accelerate their aging. With many bridges now older than their original construction, there is a need for systems to ensure safety and diagnose deterioration. Bridges are already utilizing structural health monitoring (SHM) technology to monitor the condition of bridges in real time or periodically. Along with this technology, the development of intelligent bridge monitoring technology utilizing artificial intelligence and Internet of Things technology is underway. In this paper, we study an edge system technique for predicting bridge safety using fast Fourier transform and dimensionality reduction algorithm for maintenance of aging bridges. In particular, unlike previous studies, we investigate whether it is possible to form a dataset using sensor data collected from actual bridges and check the safety of bridges.

Advances in Damage Visualization Algorithm of Ultrasonic Propagation Imaging System

  • Lee, Jung-Ryul;Sunuwar, Nitam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.232-240
    • /
    • 2013
  • This paper presents recent advances in damage visualization algorithms of laser generated ultrasonic propagation imaging(UPI) system. An effective damage evaluation method is required to extract correct information from raw data to properly characterize anomalies present in structure. A temporal-reference free imaging system provides easy and rapid defect inspection capability with less computational complexity. In this paper a number of methods such as ultrasonic wave propagation imaging(UWPI), anomalous wave propagation imaging(AWPI), ultrasonic spectral imaging(USI), wavelet ultrasonic propagation imaging(WUPI), variable time window amplitude mapping(VTWAM), time point adjustment(TPA), time of flight and amplitude mapping(ToF&Amp) and ultrasonic wavenumber imaging(UWI) are discussed with instances of successful implementation on various structures.

Effect of Biasing Magnetic Fields on the Patch-type Magnetostrictive Transducers (패치형 자왜 초음파 변환기 성능에 대한 바이어스 자기장의 영향)

  • Lee, Ho-Cheol;Kim, Hee-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1177-1183
    • /
    • 2009
  • The effects of biasing magnetic fields on the performances of magnetostrictive ultrasonic transducers are investigated. The transducers are patch-type ones which are used for SHM of plate structures. Various kinds of configurations of biasing magnets are covered experimentally. It is experimentally verified that how the biasing magnetic field deploys is the most significant factors on maximizing the transducer output. From the magnetostriction curve of nickel, it is concluded qualitatively that it is not the absolute values of biasing magnetic field but the slope of magnetostriction curve to be taken account of.

Modeling of an embedded carbon nanotube based composite strain sensor

  • Boehle, M.;Pianca, P.;Lafdi, K.;Chinesta, F.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.3
    • /
    • pp.263-273
    • /
    • 2015
  • Carbon nanotube strain sensors, or so called "fuzzy fiber" sensors have not yet been studied sufficiently. These sensors are composed of a bundle of fiberglass fibers coated with CNT through a thermal chemical vapor deposition process. The characteristics of these fuzzy fiber sensors differ from a conventional nanocomposite in that the CNTs are anchored to a substrate fiber and the CNTs have a preferential orientation due to this bonding to the substrate fiber. A numerical model was constructed to predict the strain response of a composite with embedded fuzzy fiber sensors in order to compare result with the experimental results obtained in an earlier study. A comparison of the numerical and experimental responses was conducted based on this work. The longitudinal sensor output from the model matches nearly perfectly with the experimental results. The transverse and off-axis tests follow the correct trends; however the magnitude of the output does not match well with the experimental data. An explanation of the disparity is proposed based on microstructural interactions between individual nanotubes within the sensor.

Incremental displacement estimation of structures using paired structured light

  • Jeon, Haemin;Shin, Jae-Uk;Myung, Hyun
    • Smart Structures and Systems
    • /
    • v.9 no.3
    • /
    • pp.273-286
    • /
    • 2012
  • As civil structures are exposed to various external loads, it is essential to assess the structural condition, especially the structural displacement, in every moment. Therefore, a visually servoed paired structured light system was proposed in the previous study. The proposed system is composed of two screens facing with each other, each with a camera, a screen, and one or two lasers controlled by a 2-DOF manipulator. The 6-DOF displacement can be calculated from the positions of three projected laser beams and the rotation angles of the manipulators. In the estimation process, one of well-known iterative methods such as Newton-Raphson or extended Kalman filter (EKF) was used for each measurement. Although the proposed system with the aforementioned algorithms estimates the displacement with high accuracy, it takes relatively long computation time. Therefore, an incremental displacement estimation (IDE) algorithm which updates the previously estimated displacement based on the difference between the previous and the current observed data is newly proposed. To validate the performance of the proposed algorithm, simulations and experiments are performed. The results show that the proposed algorithm significantly reduces the computation time with the same level of accuracy compared to the EKF with multiple iterations.

System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network

  • Kim, Jeong-Tae;Ho, Duc-Duy;Nguyen, Khac-Duy;Hong, Dong-Soo;Shin, Sung Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.533-553
    • /
    • 2013
  • In this paper, system identification of a cable-stayed bridge in Korea, the Hwamyung Bridge, is performed using vibration responses measured by a wireless sensor system. First, an acceleration based-wireless sensor system is employed for the structural health monitoring of the bridge, and wireless sensor nodes are deployed on a deck, a pylon and several selected cables. Second, modal parameters of the bridge are obtained both from measured vibration responses and finite element (FE) analysis. Frequency domain decomposition and stochastic subspace identification methods are used to obtain the modal parameters from the measured vibration responses. The FE model of the bridge is established using commercial FE software package. Third, structural properties of the bridge are updated using a modal sensitivity-based method. The updating work improves the accuracy of the FE model so that structural behaviors of the bridge can be represented better using the updated FE model. Finally, cable forces of the selected cables are also identified and compared with both design and lift-off test values.

Bayesian structural damage detection of steel towers using measured modal parameters

  • Lam, Heung-Fai;Yang, Jiahua
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.935-956
    • /
    • 2015
  • Structural Health Monitoring (SHM) of steel towers has become a hot research topic. From the literature, it is impractical and impossible to develop a "general" method that can detect all kinds of damages for all types of structures. A practical method should make use of the characteristics of the type of structures and the kind of damages. This paper reports a feasibility study on the use of measured modal parameters for the detection of damaged braces of tower structures following the Bayesian probabilistic approach. A substructure-based structural model-updating scheme, which groups different parts of the target structure systematically and is specially designed for tower structures, is developed to identify the stiffness distributions of the target structure under the undamaged and possibly damaged conditions. By comparing the identified stiffness distributions, the damage locations and the corresponding damage extents can be detected. By following the Bayesian theory, the probability model of the uncertain parameters is derived. The most probable model of the steel tower can be obtained by maximizing the probability density function (PDF) of the model parameters. Experimental case studies were employed to verify the proposed method. The contributions of this paper are not only on the proposal of the substructure-based Bayesian model updating method but also on the verification of the proposed methodology through measured data from a scale model of transmission tower under laboratory conditions.

Layout optimization of wireless sensor networks for structural health monitoring

  • Jalsan, Khash-Erdene;Soman, Rohan N.;Flouri, Kallirroi;Kyriakides, Marios A.;Feltrin, Glauco;Onoufriou, Toula
    • Smart Structures and Systems
    • /
    • v.14 no.1
    • /
    • pp.39-54
    • /
    • 2014
  • Node layout optimization of structural wireless systems is investigated as a means to prolong the network lifetime without, if possible, compromising information quality of the measurement data. The trade-off between these antagonistic objectives is studied within a multi-objective layout optimization framework. A Genetic Algorithm is adopted to obtain a set of Pareto-optimal solutions from which the end user can select the final layout. The information quality of the measurement data collected from a heterogeneous WSN is quantified from the placement quality indicators of strain and acceleration sensors. The network lifetime or equivalently the network energy consumption is estimated through WSN simulation that provides realistic results by capturing the dynamics of the wireless communication protocols. A layout optimization study of a monitoring system on the Great Belt Bridge is conducted to evaluate the proposed approach. The placement quality of strain gauges and accelerometers is obtained as a ratio of the Modal Clarity Index and Mode Shape Expansion values that are computed from a Finite Element model of the monitored bridge. To estimate the energy consumption of the WSN platform in a realistic scenario, we use a discrete-event simulator with stochastic communication models. Finally, we compare the optimization results with those obtained in a previous work where the network energy consumption is obtained via deterministic communication models.