DOI QR코드

DOI QR Code

Sensor System for Multi-Point Monitoring Using Bending Loss of Single Mode Optical Fiber

단일 모드 광섬유의 굽힘손실을 이용한 다점 측정 센서 시스템

  • 김헌영 (서울과학기술대학원 기계공학과) ;
  • 김대현 (서울과학기술대학교 기계.자동차공학과)
  • Received : 2015.01.21
  • Accepted : 2015.02.13
  • Published : 2015.02.28

Abstract

Applications of smart sensors have been extended to safety systems in the aerospace, transportation and civil engineering fields. In particular, structural health monitoring techniques using smart sensors have gradually become necessary and have been developed to prevent dangers to human life and damage to assets. Generally, smart sensors are based on electro-magnets and have several weaknesses, including electro-magnetic interference and distortion. Therefore, fiber optic sensors are an outstanding alternative to overcome the weaknesses of electro-magnetic sensors. However, they require expensive devices and complex systems. This paper proposes a new, affordable and simple sensor system that uses a single fiber to monitor pressures at multiple-points. Moreover, a prototype of the sensor system was manufactured and tested for a feasibility study. Based on the results of this experimental test, a relationship was carefully observed between the bend loss conditions and light-intensity. As a result, it was shown that impacts at multiple-points could be monitored.

지능형 센서 기반의 구조 건전성 감시를 통해 안전성을 확보하기 위한 연구는 우주항공을 비롯하여 기계/토목 구조물, 수송 기계 분야로 확대되었다. 특히, 실시간으로 운용되는 구조물은 사고로 인한 재산 및 인명 피해를 예방하기 위해 여러 스마트 센서 기반의 구조 건전성 감시 기술이 요구되는 결과로 이어졌다. 한편, 상용화되어 있는 대부분의 센서는 전자기 기반의 센서로써 전자기 간섭 및 부식과 같은 적용성의 제한과 환경적 요인에 취약할 수 있다. 따라서, 전자기 기반 센서의 단점을 보완하기 위한 신개념 센서로 광섬유 센서가 최근 각광을 받고 있다. 하지만, 광섬유 센서를 이용한 실제 구조물의 감시를 위해서는 고가 장비와 시스템이 요구되어 어려움이 존재한다. 따라서, 본 연구에서는 한 가닥의 광섬유를 이용하여 여러 지점에서 발생할 수 있는 충격을 검출하는 센서 시스템을 제안하였다. 이를 위해, 광섬유 굽힘 손실 현상을 이용하여 같은 충격에 대해 위치별 광 강도의 변화량 차이가 존재하도록 센서부의 모듈을 제작하였다. 그리고, 광 강도 변화에 영향을 미치는 변수들을 이용하여 실험 설계를 하였으며, 충격 위치 검출이 가능함을 실험적으로 검증하였다.

Keywords

References

  1. I. K. Park, Y. S. Cho, W. J. Song and Y. G. Kim, "Application of torsional mode of guided wave to long lange pipe inspection," Key Engineering Materials, Vol. 326, pp. 473-476 (2006)
  2. I. K. Park, W. J. Song, Y. S. Cho, H. M. Kim and Y. G. Kim, "Long range ultrasonic guided wave technique for inspection of pipes," Key Engineering Materials, Vol. 321, pp. 799-803 (2006)
  3. J.-H. Lee, S. Han, J. Ahn D.-H. Kim and H. Moon, "Two-module robotic pipe inspection system with EMATs," Smart Structures and Systems, Vol. 13, No. 6, pp. 1041-1063 (2014) https://doi.org/10.12989/sss.2014.13.6.1041
  4. J. B. Ihn and F. K. Chang, "Pitch-catch active sensing methods in structural health monitoring for aircraft structures," Structural Health Monitoring, Vol. 7, No. 1, pp. 5-19 (2008) https://doi.org/10.1177/1475921707081979
  5. B. Yoo, A. S. Purekar, Y. Zhang and D. J. Pines, "Piezoelectric-paint-based two-dimensional phased sensor arrays for structural health monitoring of thin panels," Smart Materials and Structures, Vol. 19, No. 7 (2010)
  6. S. Kavithaa, R. J. Daniela and K. Sumangalab, "A simple analytical design approach based on computer aided analysis of bulk micro-machined piezoresistive MEMS accelerometer for concrete SHM applications," Measurement, Vol. 46, No. 9, pp. 3372-3388 (2013) https://doi.org/10.1016/j.measurement.2013.05.013
  7. K. H. Lee and D. H. Kim. "Shape monitoring of composite cantilever beam by using fiber Bragg grating sensors," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 7, pp. 833-839 (2013) https://doi.org/10.3795/KSME-A.2013.37.7.833
  8. H. Y. Kim, D. Kang, J. H. Lee and D. H. Kim, "Characteristics of thermal coefficient of fiber Bragg grating for temperature measurement," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 8, pp. 999-1005 (2013) https://doi.org/10.3795/KSME-A.2013.37.8.999
  9. J. A. You, J. H. Jo and I. B. Kwon, "Multiplexed bend loss type single-mode fiber-optic displacement sensor using reflection signals generated at optical connectors," Korean Journal of Optics and Photonics, Vol. 15, No. 5, pp. 415-422 (2004) https://doi.org/10.3807/KJOP.2004.15.5.415
  10. K. H. Lee, B. J. Ahn and D. H. Kim, "Fiber optic displacement sensor system for structural health monitoring," Journal of the Korean Society for Nondestructive Testing, Vol. 31, No. 4, pp. 374-381 (2011)

Cited by

  1. Thermal characteristics of FBG sensors at cryogenic temperatures for structural health monitoring vol.17, pp.1, 2016, https://doi.org/10.1007/s12541-016-0001-4
  2. Reliability Evaluation of Fiber Optic Sensors Exposed to Cyclic Thermal Load vol.36, pp.3, 2016, https://doi.org/10.7779/JKSNT.2016.36.3.225