Kim, Heon-Young;Kang, Donghoon;Lee, Jin-Hyuk;Kim, Dae-Hyun
Transactions of the Korean Society of Mechanical Engineers A
/
v.37
no.8
/
pp.999-1005
/
2013
A fiber Bragg grating sensor is considered a smart sensor that shows outstanding performance in the field of structural health monitoring (SHM). It has a powerful advantage, especially that of multiplexing, which enables several parameters to be sensed at multiple points by using a single optical fiber line. Among several parameters, the thermal expansion coefficient and thermo-optic coefficient are required to measure temperature. In previous studies, these were considered constant variables. This study shows that two parameters vary with temperature and newly proposes a temperature function for these two parameters. Specifically, these two parameters were defined as a single variable, and then, it was experimentally verified that this variable is a function of temperature. Finally, it was shown that temperature from RT to $100^{\circ}C$ was precisely measured by using the temperature function that was defined through the experiment.
Jiajia, Hao;Xinqun, Zhu;Yang, Yu;Chunwei, Zhang;Jianchun, Li
Smart Structures and Systems
/
v.30
no.6
/
pp.673-686
/
2022
Deep learning algorithms for Structural Health Monitoring (SHM) have been extracting the interest of researchers and engineers. These algorithms commonly used loss functions and evaluation indices like the mean square error (MSE) which were not originally designed for SHM problems. An updated loss function which was specifically constructed for deep-learning-based structural damage detection problems has been proposed in this study. By tuning the coefficients of the loss function, the weights for damage localization and quantification can be adapted to the real situation and the deep learning network can avoid unnecessary iterations on damage localization and focus on the damage severity identification. To prove efficiency of the proposed method, structural damage detection using convolutional neural networks (CNNs) was conducted on a truss bridge model. Results showed that the validation curve with the updated loss function converged faster than the traditional MSE. Data augmentation was conducted to improve the anti-noise ability of the proposed method. For reducing the training time, the normalized modal strain energy change (NMSEC) was extracted, and the principal component analysis (PCA) was adopted for dimension reduction. The results showed that the training time was reduced by 90% and the damage identification accuracy could also have a slight increase. Furthermore, the effect of different modes and elements on the training dataset was also analyzed. The proposed method could greatly improve the performance for structural damage detection on both the training time and detection accuracy.
Within the context of Structural Health Monitoring (SHM), it is often the case that structural systems are described by uncertainty, both with respect to their parameters and the characteristics of the input loads. For the purposes of system identification, efficient modeling procedures are of the essence for a fast and reliable computation of structural response while taking these uncertainties into account. In this work, a reduced order metamodeling framework is introduced for the challenging case of nonlinear structural systems subjected to earthquake excitation. The introduced metamodeling method is based on Nonlinear AutoRegressive models with eXogenous input (NARX), able to describe nonlinear dynamics, which are moreover characterized by random parameters utilized for the description of the uncertainty propagation. These random parameters, which include characteristics of the input excitation, are expanded onto a suitably defined finite-dimensional Polynomial Chaos (PC) basis and thus the resulting representation is fully described through a small number of deterministic coefficients of projection. The effectiveness of the proposed PC-NARX method is illustrated through its implementation on the metamodeling of a five-storey shear frame model paradigm for response in the region of plasticity, i.e., outside the commonly addressed linear elastic region. The added contribution of the introduced scheme is the ability of the proposed methodology to incorporate uncertainty into the simulation. The results demonstrate the efficiency of the proposed methodology for accurate prediction and simulation of the numerical model dynamics with a vast reduction of the required computational toll.
Transactions of the Korean Society for Noise and Vibration Engineering
/
v.23
no.2
/
pp.152-159
/
2013
A structural health monitoring(SHM) technique for locating impact position in a composite plate is presented in this paper. The technique employs a single sensor and spatial focusing properties of time reversal(TR) and inverse filtering(IF). We first examine the focusing effect of back-propagated signal at the impact position and its surroundings through simulation. Impact experiments are then carried out and the localization images are found using the TR and IF signal processing, respectively. Both techniques provide accurate impact location results. Compared to existing techniques for locating impact or acoustic emission source, the proposed methods have the benefits of using a single sensor and not requiring knowledge of material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in the SHM of plate-like structures.
Journal of the Korean Society for Nondestructive Testing
/
v.31
no.2
/
pp.165-173
/
2011
The acoustic emission(AE) technique is a well established method to carry out structural health monitoring(SHM) of large structures. However, the real-time monitoring of the crack growth in the roller coaster support structures is not easy since the vehicle operation produces very large noise as well as crack growth. In this investigation, we present the waveform parameter filtering method to classify acoustic sources in real-time. This method filtrates only the AE hits by the target acoustic source as passing hits in a specific parameter band. According to various acoustic sources, the waveform parameters were measured and analyzed to verify the present filtering method. Also, the AE system employing the waveform parameter filter was manufactured and applied to the roller coaster support structure in an actual amusement park.
Journal of the Computational Structural Engineering Institute of Korea
/
v.30
no.6
/
pp.541-547
/
2017
Climate change has become the main cause of the exacerbation in natural disasters. Social Overhead Capital(SOC) structure needs to be checked for displacement and crack periodically to prevent damage and the collapse caused by natural disaster and ensure the safety. For efficient structure maintenance, the optical image technology is applied to the Structure Health Monitoring(SHM). However, optical image is sensitive to environmental factors. So it is necessary to verify its validity. In this paper, the accuracy of estimating the vertical displacement was verified with respect to environmental condition such as natural light, measurement distance, and the number of image sheets. The result of experiments showed that the effect of natural light on accuracy of estimating vertical displacement was the greatest of all. The measurement angle which was affected by the change in measurement distance was also important to check the vertical displacement. These findings will be taken into account by applying appropriate environmental condition to minimize errors when the bridge was measured by camera. It will also enable the application of optical images to the SHM.
Zhou, Cong;Chase, J. Geoffrey;Rodgers, Geoffrey W.;Xu, Chao;Tomlinson, Hamish
Smart Structures and Systems
/
v.16
no.1
/
pp.163-181
/
2015
This research investigates the structural health monitoring of nonlinear structures after a major seismic event. It considers the identification of flag-shaped or pinched hysteresis behavior in response to structures as a more general case of a normal hysteresis curve without pinching. The method is based on the overall least squares methods and the log likelihood ratio test. In particular, the structural response is divided into different loading and unloading sub-half cycles. The overall least squares analysis is first implemented to obtain the minimum residual mean square estimates of structural parameters for each sub-half cycle with the number of segments assumed. The log likelihood ratio test is used to assess the likelihood of these nonlinear segments being true representations in the presence of noise and model error. The resulting regression coefficients for identified segmented regression models are finally used to obtain stiffness, yielding deformation and energy dissipation parameters. The performance of the method is illustrated using a single degree of freedom system and a suite of 20 earthquake records. RMS noise of 5%, 10%, 15% and 20% is added to the response data to assess the robustness of the identification routine. The proposed method is computationally efficient and accurate in identifying the damage parameters within 10% average of the known values even with 20% added noise. The method requires no user input and could thus be automated and performed in real-time for each sub-half cycle, with results available effectively immediately after an event as well as during an event, if required.
In recent years the monitoring of structural behavior through acquisition of vibrational data has become common practice. In addition, recent advances in sensor development have made the collection of diverse dynamic information feasible. Other than the commonly collected acceleration information, Global Position System (GPS) receivers and non-contact, optical techniques have also allowed for the synchronous collection of highly accurate displacement data. The fusion of this heterogeneous information is crucial for the successful monitoring and control of structural systems especially when aiming at real-time estimation. This task is not a straightforward one as measurements are inevitably corrupted with some percentage of noise, often leading to imprecise estimation. Quite commonly, the presence of noise in acceleration signals results in drifting estimates of displacement states, as a result of numerical integration. In this study, a new approach based on a time domain identification method, namely the Unscented Kalman Filter (UKF), is proposed for correcting the "drift effect" in displacement or rotation estimates in an online manner, i.e., on the fly as data is attained. The method relies on the introduction of artificial white noise (WN) observations into the filter equations, which is shown to achieve an online correction of the drift issue, thus yielding highly accurate motion data. The proposed approach is demonstrated for two cases; firstly, the illustrative example of a single degree of freedom linear oscillator is examined, where availability of acceleration measurements is exclusively assumed. Secondly, a field inspired implementation is presented for the torsional identification of a tall tower structure, where acceleration measurements are obtained at a high sampling rate and non-collocated GPS displacement measurements are assumed available at a lower sampling rate. A multi-rate Kalman Filter is incorporated into the analysis in order to successfully fuse data sampled at different rates.
In this paper, the structural health monitoring (SHM) benchmark problem of the Canton tower is studied. Based on the field monitoring data from the 20 accelerometers deployed on the tower, some modal frequencies and mode shapes at measured degrees of freedom of the tower are identified. Then, these identified incomplete modal data are used to update the reduced finite element (FE) model of the tower by a novel algorithm. The proposed algorithm avoids the problem of subjective selection of updated parameters and directly updates model stiffness matrix without model reduction or modal expansion approach. Only the eigenvalues and eigenvectors of the normal finite element models corresponding to the measured modes are needed in the computation procedures. The updated model not only possesses the measured modal frequencies and mode shapes but also preserves the modal frequencies and modes shapes in their normal values for the unobserved modes. Updating results including the natural frequencies and mode shapes are compared with the experimental ones to evaluate the proposed algorithm. Also, dynamic responses estimated from the updated FE model using remote senor locations are compared with the measurement ones to validate the convergence of the updated model.
A visually servoed paired structured light system (ViSP) was recently proposed as a novel estimation method of the 6-DOF (Degree-Of-Freedom) relative displacement in civil structures. In order to apply the ViSP to massive structures, multiple ViSP modules should be installed in a cascaded manner. In this configuration, the estimation errors are propagated through the ViSP modules. In order to resolve this problem, a displacement estimation error back-propagation (DEEP) method was proposed. However, the DEEP method has some disadvantages: the displacement range of each ViSP module must be constrained and displacement errors are corrected sequentially, and thus the entire estimation errors are not considered concurrently. To address this problem, a pose-graph optimized displacement estimation (PODE) method is proposed in this paper. The PODE method is based on a graph-based optimization technique that considers entire errors at the same time. Moreover, this method does not require any constraints on the movement of the ViSP modules. Simulations and experiments are conducted to validate the performance of the proposed method. The results show that the PODE method reduces the propagation errors in comparison with a previous work.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.