• 제목/요약/키워드: SHAP model

검색결과 74건 처리시간 0.022초

신용평가에서 설명가능 인공지능의 활용에 관한 연구 (Study on use of Explainable Artificial Intelligence in Credit Rating)

  • 윤영인;김성욱;정혜영
    • 문화기술의 융합
    • /
    • 제10권4호
    • /
    • pp.751-756
    • /
    • 2024
  • 모델의 정확도와 결과에 대한 설명가능성은 동시에 고려되어야 할 중요한 요소이다. 최근에는 설명가능한 인공지능을 적용하는 응용 사례가 증가하였고 결과에 대한 해석이 특히 중요시되는 금융에서도 많이 적용되고 있다. 본 논문에서는 오픈 API의 신용평가 자료를 다양한 머신러닝 기법의 성능을 비교하고 모델로부터 설명가능한 인공지능 기법인 SHAP과 LIME을 통해 정확도와 결과에 대한 설명력을 보이고자 한다. 이에 따라 금융 시장에서 머신러닝의 적용가능성을 보일 것으로 기대된다.

SHAP를 활용한 중요변수 파악 및 선택에 따른 잔여유효수명 예측 성능 변동에 대한 연구 (A Study on the Remaining Useful Life Prediction Performance Variation based on Identification and Selection by using SHAP)

  • 윤연아;이승훈;김용수
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.1-11
    • /
    • 2021
  • Recently, the importance of preventive maintenance has been emerging since failures in a complex system are automatically detected due to the development of artificial intelligence techniques and sensor technology. Therefore, prognostic and health management (PHM) is being actively studied, and prediction of the remaining useful life (RUL) of the system is being one of the most important tasks. A lot of researches has been conducted to predict the RUL. Deep learning models have been developed to improve prediction performance, but studies on identifying the importance of features are not carried out. It is very meaningful to extract and interpret features that affect failures while improving the predictive accuracy of RUL is important. In this paper, a total of six popular deep learning models were employed to predict the RUL, and identified important variables for each model through SHAP (Shapley Additive explanations) that one of the explainable artificial intelligence (XAI). Moreover, the fluctuations and trends of prediction performance according to the number of variables were identified. This paper can suggest the possibility of explainability of various deep learning models, and the application of XAI can be demonstrated. Also, through this proposed method, it is expected that the possibility of utilizing SHAP as a feature selection method.

리조트 교차판매 예측모형 개발 및 SHAP을 이용한 해석 (Development of a Resort's Cross-selling Prediction Model and Its Interpretation using SHAP)

  • 강보람;안현철
    • 한국빅데이터학회지
    • /
    • 제7권2호
    • /
    • pp.195-204
    • /
    • 2022
  • 관광산업은 최근 코로나19 유행으로 인해 위기에 봉착해 있으며, 이를 극복하기 위해 무엇보다 수익성 개선이 매우 중요한 상황이다. 이 때 여행 수요 자체가 축소된 코로나19와 같은 상황에서는 수익 증대를 위해 객실 점유율을 높이기 위한 공격적인 영업전략보다 어려운 여건 속에서도 찾아온 고객에게 객실 외 추가상품을 판매하여 객단가를 높이는 방향이 더 효율적일 것이다. 국내 관광 연구 분야에서 머신러닝 기법은 수요예측을 중심으로 연구된 바 있으나 교차판매 예측에 대해서는 연구된 바가 거의 없다. 또한 넓은 의미로는 호텔과 같은 숙박업종 이지만 회원제 중심으로 운영하며 숙박과 취사에 적합한 시설을 갖추고 있는 리조트 업종에 특화된 연구는 더욱이 전무한 실정이다. 이에 본 연구에서는 실제 리조트 회사의 투숙 데이터로 다양한 머신러닝 기법을 활용하여 교차판매 예측 모형을 제안하고자 한다. 또한 설명가능한 인공지능(eXplainable AI) 기법을 적용해 교차판매에 영향을 미치는 요인이 무엇인지 해석하고 어떻게 영향을 미치는지 실증 분석을 통해 확인해 보고자 한다.

Prediction of Stock Returns from News Article's Recommended Stocks Using XGBoost and LightGBM Models

  • Yoo-jin Hwang;Seung-yeon Son;Zoon-ky Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권2호
    • /
    • pp.51-59
    • /
    • 2024
  • 투자자는 수익의 극대화를 위해 언론사의 기사를 포함한 다양한 정보를 활용하여 투자 전략을 수립한다. 이에 국내 언론사에서도 신뢰도 있는 투자정보를 제공하기 위해, 애널리스트의 종목분석 보고서에 기초한 종목 추천기사를 게재하고 있다. 본 연구에서는 종목 추천기사 게재를 하나의 사건(event)으로 간주하고, XGBoost와 LightGBM 모델을 활용하여 기사 게재 10일 이후 가격의 상승 또는 하락을 예측하는 분류 모델을 제시한다. 또한, 전체 추천종목을 유가증권시장과 코스닥 시장 및 기업규모(대형/소형)에 따라 4가지로 분류하고, 하위 그룹에 따라 모델의 예측 정확도에 차이가 있는지 파악하고자 한다. 학습 결과 전체 모델의 분류 정확도는 XGBoost 75%, LightGBM 71%로 나타났고, 예측 정확도는 유가증권 시장 예측력이 코스닥시장 주식 대비 높게 나타났으며, 대형주의 예측력이 소형주 보다 높게 나타났다. 마지막으로, SHAP(Shapley Additive exPlanations) 분석을 통해 개별 모델의 예측에 중요한 변수를 살펴보고 모델의 해석력을 제고하였다.

RFE-SHAP을 활용한 온라인 리뷰를 통한 고객 만족도 예측 (Prediction of Customer Satisfaction Using RFE-SHAP Feature Selection Method)

  • 체르냐예바 올가;홍태호
    • 지능정보연구
    • /
    • 제29권4호
    • /
    • pp.325-345
    • /
    • 2023
  • 본 연구는 온라인 리뷰를 이용하여 고객 만족도를 예측하는 새로운 접근 방식을 제안한다. LDA 주제 모델링과 결합된 RFE-SHAP 기능 선택 방법을 활용하여 고객 만족도에 큰 영향을 미치는 주요 기능을 식별하여 예측 분석을 개선했다. 먼저 Random Forest 알고리즘의 경우, 초기 28개 입력변수에서 14개의 변수를 최적 하위 집합으로 추출했다. 제안된 방법에서 Random Forest 모델의 성과는 84%로 확인 되었으며 변수가 많은 모델에서 흔히 발생하는 과적합을 방지하였다. 또한 품질, 착용감, 내구성 등과 같은 리뷰의 특정 요소들이 패션 산업 내에서 소비자 만족도를 증진시키는 중요한 역할을 한다는 사실을 밝혀냈다. 본 연구는 예측 결과를 설명할 때 선택한 각 기능이 고객 만족도에 어떻게 영향을 미치는지에 대한 자세한 설명을 제공하고 고객이 가장 중요하게 생각하는 측면에 대한 세부적인 보기를 제공한다. 본 연구의 공헌도는 다음과 같다. 첫째, 전자상거래 분석 분야 내에서 예측 모델링을 강화하고 특성 중심적인 접근법을 소개함으로써 방법론을 개선하였다. 이는 고객 만족도 예측의 정확도를 높일 뿐만 아니라 예측 모델에서의 변수 선택에 대한 새로운 접근을 제시한다. 둘째, 특히 의류 부문에서 전자상거래 플랫폼에 구체적인 통찰력을 제공한다. 품질, 사이즈, 내구성 등 고객 리뷰의 어떤 부분이 만족도에 가장 큰 영향을 미치는지 강조함으로써, 기업들이 제품과 서비스를 맞춤화 할 수 있는 전략적 방향을 제시한다. 이러한 목표 지향적인 개선은 고객의 쇼핑 경험을 개선하고, 만족도를 향상시키면서 충성도를 이끌어낼 수 있을 것으로 기대한다.

머신러닝을 활용한 사회 · 경제지표 기반 산재 사고사망률 상대비교 방법론 (Socio-economic Indicators Based Relative Comparison Methodology of National Occupational Accident Fatality Rates Using Machine Learning)

  • 김경훈;이수동
    • 대한안전경영과학회지
    • /
    • 제24권4호
    • /
    • pp.41-47
    • /
    • 2022
  • A reliable prediction model of national occupational accident fatality rate can be used to evaluate level of safety and health protection for workers in a country. Moreover, the socio-economic aspects of occupational accidents can be identified through interpretation of a well-organized prediction model. In this paper, we propose a machine learning based relative comparison methods to predict and interpret a national occupational accident fatality rate based on socio-economic indicators. First, we collected 29 years of the relevant data from 11 developed countries. Second, we applied 4 types of machine learning regression models and evaluate their performance. Third, we interpret the contribution of each input variable using Shapley Additive Explanations(SHAP). As a result, Gradient Boosting Regressor showed the best predictive performance. We found that different patterns exist across countries in accordance with different socio-economic variables and occupational accident fatality rate.

레이저 분말 베드 용융법으로 제조된 AlSi10Mg 합금의 경도 예측을 위한 설명 가능한 인공지능 활용 (Application of Explainable Artificial Intelligence for Predicting Hardness of AlSi10Mg Alloy Manufactured by Laser Powder Bed Fusion)

  • 전준협;서남혁;김민수;손승배;정재길;이석재
    • 한국분말재료학회지
    • /
    • 제30권3호
    • /
    • pp.210-216
    • /
    • 2023
  • In this study, machine learning models are proposed to predict the Vickers hardness of AlSi10Mg alloys fabricated by laser powder bed fusion (LPBF). A total of 113 utilizable datasets were collected from the literature. The hyperparameters of the machine-learning models were adjusted to select an accurate predictive model. The random forest regression (RFR) model showed the best performance compared to support vector regression, artificial neural networks, and k-nearest neighbors. The variable importance and prediction mechanisms of the RFR were discussed by Shapley additive explanation (SHAP). Aging time had the greatest influence on the Vickers hardness, followed by solution time, solution temperature, layer thickness, scan speed, power, aging temperature, average particle size, and hatching distance. Detailed prediction mechanisms for RFR are analyzed using SHAP dependence plots.

설명가능한 인공지능을 활용한 안면 특징 분석 기반 사상체질 검출 (Sasang Constitution Detection Based on Facial Feature Analysis Using Explainable Artificial Intelligence)

  • 김정균;안일구;이시우
    • 사상체질의학회지
    • /
    • 제36권2호
    • /
    • pp.39-48
    • /
    • 2024
  • Objectives The aim was to develop a method for detecting Sasang constitution based on the ratio of facial landmarks and provide an objective and reliable tool for Sasang constitution classification. Methods Facial images, KS-15 scores, and certainty scores were collected from subjects identified by Korean Medicine Data Center. Facial ratio landmarks were detected, yielding 2279 facial ratio features. Tree-based models were trained to classify Sasang constitution, and Shapley Additive Explanations (SHAP) analysis was employed to identify important facial features. Additionally, Body Mass Index (BMI) and personality questionnaire were incorporated as supplementary information to enhance model performance. Results Using the Tree-based models, the accuracy for classifying Taeeum, Soeum, and Soyang constitutions was 81.90%, 90.49%, and 81.90% respectively. SHAP analysis revealed important facial features, while the inclusion of BMI and personality questionnaire improved model performance. This demonstrates that facial ratio-based Sasang constitution analysis yields effective and accurate classification results. Conclusions Facial ratio-based Sasang constitution analysis provides rapid and objective results compared to traditional methods. This approach holds promise for enhancing personalized medicine in Korean traditional medicine.

설명 가능한 정기예금 가입 여부 예측을 위한 앙상블 학습 기반 분류 모델들의 비교 분석 (A Comparative Analysis of Ensemble Learning-Based Classification Models for Explainable Term Deposit Subscription Forecasting)

  • 신지안;문지훈;노승민
    • 한국전자거래학회지
    • /
    • 제26권3호
    • /
    • pp.97-117
    • /
    • 2021
  • 정기예금 가입 여부 예측은 은행의 대표적인 금융 마케팅 중 하나로, 은행은 다양한 고객 정보를 활용하여 예측 모델을 구성할 수 있다. 정기예금 가입 여부의 분류 정확도를 향상하기 위해, 많은 연구에서 기계학습 기법들을 이용하여 분류 모델들을 개발하였다. 하지만, 이러한 모델들이 만족스러운 성능을 보일지라도 모델의 의사결정 과정에 대한 근거가 적절하게 설명되지 않는다면 산업에서 활용하기가 쉽지 않다. 이러한 문제점을 해결하기 위해, 본 논문은 설명 가능한 정기예금 가입 여부 예측 기법을 제안한다. 먼저, 테이블 형식에서 우수한 성능을 도출하는 의사결정 나무 기반 앙상블 학습 기법인 랜덤 포레스트, GBM, XGBoost, LightGBM을 이용하여 분류 모델들을 개발하고, 10겹 교차검증을 통해 모델들의 분류 성능을 심층 분석한다. 다음으로, 가장 우수한 성능을 도출하는 모델에 설명 가능한 인공지능 기법인 SHAP을 적용하여 고객 정보의 영향도와 의사결정 과정 등을 해석할 수 있는 근거를 제공한다. 제안한 기법의 실용성과 타당성을 입증하기 위해, Kaggle에서 제공한 은행 마케팅 데이터 셋을 대상으로 모의실험을 진행하였으며, 데이터 셋 구성에 따라 GBM과 LightGBM 모델에 SHAP을 각기 적용하여 설명 가능한 정기예금 가입 여부를 위한 분석 및 시각화를 수행하였다.

XAI 기반의 임상의사결정시스템에 관한 연구 (A Study on XAI-based Clinical Decision Support System)

  • 안윤애;조한진
    • 한국콘텐츠학회논문지
    • /
    • 제21권12호
    • /
    • pp.13-22
    • /
    • 2021
  • 임상의사결정시스템은 누적된 의료 데이터를 활용하여 머신러닝으로 학습된 AI 모델을 환자의 진단 및 진료 예측에 적용한다. 그러나 기존의 블랙박스 기반의 AI 응용은 시스템이 예측한 결과에 대해 타당한 이유를 제시하지 못하여 설명성이 부족한 한계점이 존재한다. 이와 같은 문제점을 보완하기 위해 이 논문에서는 임상의사결정시스템의 개발 단계에서 설명이 가능한 XAI를 적용하는 시스템 모델을 제안한다. 제안 모델은 기존의 AI모델에 설명성이 가능한 특정 XAI 기술을 추가로 적용시켜 블랙박스의 한계점을 보완할 수 있다. 제안 모델의 적용을 보이기 위해 LIME과 SHAP을 활용한 XAI 적용 사례를 제시한다. 테스트를 통해 데이터들이 모델의 예측 결과에 어떤 영향을 미치는지 다양한 관점에서 설명할 수 있다. 제안된 모델은 사용자에게 구체적인 이유를 제시함으로써 사용자의 신뢰를 높일 수 있는 장점을 가진다. 아울러 XAI의 적극적인 활용을 통해 기존 임상의사결정시스템의 한계를 극복하고 더 나은 진단 및 의사결정 지원을 가능하게 할 것으로 기대한다.