• Title/Summary/Keyword: SHAP 분석

Search Result 50, Processing Time 0.023 seconds

Analysis of Malware Group Classification with eXplainable Artificial Intelligence (XAI기반 악성코드 그룹분류 결과 해석 연구)

  • Kim, Do-yeon;Jeong, Ah-yeon;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.559-571
    • /
    • 2021
  • Along with the increase prevalence of computers, the number of malware distributions by attackers to ordinary users has also increased. Research to detect malware continues to this day, and in recent years, research on malware detection and analysis using AI is focused. However, the AI algorithm has a disadvantage that it cannot explain why it detects and classifies malware. XAI techniques have emerged to overcome these limitations of AI and make it practical. With XAI, it is possible to provide a basis for judgment on the final outcome of the AI. In this paper, we conducted malware group classification using XGBoost and Random Forest, and interpreted the results through SHAP. Both classification models showed a high classification accuracy of about 99%, and when comparing the top 20 API features derived through XAI with the main APIs of malware, it was possible to interpret and understand more than a certain level. In the future, based on this, a direct AI reliability improvement study will be conducted.

Prediction of Agricultural Purchases Using Structured and Unstructured Data: Focusing on Paprika (정형 및 비정형 데이터를 이용한 농산물 구매량 예측: 파프리카를 중심으로)

  • Somakhamixay Oui;Kyung-Hee Lee;HyungChul Rah;Eun-Seon Choi;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.169-179
    • /
    • 2021
  • Consumers' food consumption behavior is likely to be affected not only by structured data such as consumer panel data but also by unstructured data such as mass media and social media. In this study, a deep learning-based consumption prediction model is generated and verified for the fusion data set linking structured data and unstructured data related to food consumption. The results of the study showed that model accuracy was improved when combining structured data and unstructured data. In addition, unstructured data were found to improve model predictability. As a result of using the SHAP technique to identify the importance of variables, it was found that variables related to blog and video data were on the top list and had a positive correlation with the amount of paprika purchased. In addition, according to the experimental results, it was confirmed that the machine learning model showed higher accuracy than the deep learning model and could be an efficient alternative to the existing time series analysis modeling.

Development of a Resort's Cross-selling Prediction Model and Its Interpretation using SHAP (리조트 교차판매 예측모형 개발 및 SHAP을 이용한 해석)

  • Boram Kang;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.195-204
    • /
    • 2022
  • The tourism industry is facing a crisis due to the recent COVID-19 pandemic, and it is vital to improving profitability to overcome it. In situations such as COVID-19, it would be more efficient to sell additional products other than guest rooms to customers who have visited to increase the unit price rather than adopting an aggressive sales strategy to increase room occupancy to increase profits. Previous tourism studies have used machine learning techniques for demand forecasting, but there have been few studies on cross-selling forecasting. Also, in a broader sense, a resort is the same accommodation industry as a hotel. However, there is no study specialized in the resort industry, which is operated based on a membership system and has facilities suitable for lodging and cooking. Therefore, in this study, we propose a cross-selling prediction model using various machine learning techniques with an actual resort company's accommodation data. In addition, by applying the explainable artificial intelligence XAI(eXplainable AI) technique, we intend to interpret what factors affect cross-selling and confirm how they affect cross-selling through empirical analysis.

Who Gets Government SME R&D Subsidy? Application of Gradient Boosting Model (Gradient Boosting 모형을 이용한 중소기업 R&D 지원금 결정요인 분석)

  • Kang, Sung Won;Kang, HeeChan
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.4
    • /
    • pp.77-109
    • /
    • 2020
  • In this paper, we build a gradient Boosting model to predict government SME R&D subsidy, select features of high importance, and measure the impact of each features to the predicted subsidy using PDP and SHAP value. Unlike previous empirical researches, we focus on the effect of the R&D subsidy distribution pattern to the incentive of the firms participating subsidy competition. We used the firm data constructed by KISTEP linking government R&D subsidy record with financial statements provided by NICE, and applied a Gradient Boosting model to predict R&D subsidy. We found that firms with higher R&D performance and larger R&D investment tend to have higher R&D subsidies, but firms with higher operation profit or total asset turnover rate tend to have lower R&D subsidies. Our results suggest that current government R&D subsidy distribution pattern provides incentive to improve R&D project performance, but not business performance.

A Data-Driven Causal Analysis on Fatal Accidents in Construction Industry (건설 사고사례 데이터 기반 건설업 사망사고 요인분석)

  • Jiyoon Choi;Sihyeon Kim;Songe Lee;Kyunghun Kim;Sudong Lee
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.3
    • /
    • pp.63-71
    • /
    • 2023
  • The construction industry stands out for its higher incidence of accidents in comparison to other sectors. A causal analysis of the accidents is necessary for effective prevention. In this study, we propose a data-driven causal analysis to find significant factors of fatal construction accidents. We collected 14,318 cases of structured and text data of construction accidents from the Construction Safety Management Integrated Information (CSI). For the variables in the collected dataset, we first analyze their patterns and correlations with fatal construction accidents by statistical analysis. In addition, machine learning algorithms are employed to develop a classification model for fatal accidents. The integration of SHAP (SHapley Additive exPlanations) allows for the identification of root causes driving fatal incidents. As a result, the outcome reveals the significant factors and keywords wielding notable influence over fatal accidents within construction contexts.

Sasang Constitution Detection Based on Facial Feature Analysis Using Explainable Artificial Intelligence (설명가능한 인공지능을 활용한 안면 특징 분석 기반 사상체질 검출)

  • Jeongkyun Kim;Ilkoo Ahn;Siwoo Lee
    • Journal of Sasang Constitutional Medicine
    • /
    • v.36 no.2
    • /
    • pp.39-48
    • /
    • 2024
  • Objectives The aim was to develop a method for detecting Sasang constitution based on the ratio of facial landmarks and provide an objective and reliable tool for Sasang constitution classification. Methods Facial images, KS-15 scores, and certainty scores were collected from subjects identified by Korean Medicine Data Center. Facial ratio landmarks were detected, yielding 2279 facial ratio features. Tree-based models were trained to classify Sasang constitution, and Shapley Additive Explanations (SHAP) analysis was employed to identify important facial features. Additionally, Body Mass Index (BMI) and personality questionnaire were incorporated as supplementary information to enhance model performance. Results Using the Tree-based models, the accuracy for classifying Taeeum, Soeum, and Soyang constitutions was 81.90%, 90.49%, and 81.90% respectively. SHAP analysis revealed important facial features, while the inclusion of BMI and personality questionnaire improved model performance. This demonstrates that facial ratio-based Sasang constitution analysis yields effective and accurate classification results. Conclusions Facial ratio-based Sasang constitution analysis provides rapid and objective results compared to traditional methods. This approach holds promise for enhancing personalized medicine in Korean traditional medicine.

A Machine Learning-based Popularity Prediction Model for YouTube Mukbang Content (머신러닝 기반의 유튜브 먹방 콘텐츠 인기 예측 모델)

  • Beomgeun Seo;Hanjun Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.49-55
    • /
    • 2023
  • In this study, models for predicting the popularity of mukbang content on YouTube were proposed, and factors influencing the popularity of mukbang content were identified through post-analysis. To accomplish this, information on 22,223 pieces of content was collected from top mukbang channels in terms of subscribers using APIs and Pretty Scale. Machine learning algorithms such as Random Forest, XGBoost, and LGBM were used to build models for predicting views and likes. The results of SHAP analysis showed that subscriber count had the most significant impact on view prediction models, while the attractiveness of a creator emerged as the most important variable in the likes prediction model. This confirmed that the precursor factors for content views and likes reactions differ. This study holds academic significance in analyzing a large amount of online content and conducting empirical analysis. It also has practical significance as it informs mukbang creators about viewer content consumption trends and provides guidance for producing high-quality, marketable content.

Development of Tree Detection Methods for Estimating LULUCF Settlement Greenhouse Gas Inventories Using Vegetation Indices (식생지수를 활용한 LULUCF 정주지 온실가스 인벤토리 산정을 위한 수목탐지 방법 개발)

  • Joon-Woo Lee;Yu-Han Han;Jeong-Taek Lee;Jin-Hyuk Park;Geun-Han Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1721-1730
    • /
    • 2023
  • As awareness of the problem of global warming emerges around the world, the role of carbon sinks in settlement is increasingly emphasized to achieve carbon neutrality in urban areas. In order to manage carbon sinks in settlement, it is necessary to identify the current status of carbon sinks. Identifying the status of carbon sinks requires a lot of manpower and time and a corresponding budget. Therefore, in this study, a map predicting the location of trees was created using already established tree location information and Sentinel-2 satellite images targeting Seoul. To this end, after constructing a tree presence/absence dataset, structured data was generated using 16 types of vegetation indices information constructed from satellite images. After learning this by applying the Extreme Gradient Boosting (XGBoost) model, a tree prediction map was created. Afterward, the correlation between independent and dependent variables was investigated in model learning using the Shapely value of Shapley Additive exPlanations(SHAP). A comparative analysis was performed between maps produced for local parts of Seoul and sub-categorized land cover maps. In the case of the tree prediction model produced in this study, it was confirmed that even hard-to-detect street trees around the main street were predicted as trees.

Analysis of the impact of mathematics education research using explainable AI (설명가능한 인공지능을 활용한 수학교육 연구의 영향력 분석)

  • Oh, Se Jun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.435-455
    • /
    • 2023
  • This study primarily focused on the development of an Explainable Artificial Intelligence (XAI) model to discern and analyze papers with significant impact in the field of mathematics education. To achieve this, meta-information from 29 domestic and international mathematics education journals was utilized to construct a comprehensive academic research network in mathematics education. This academic network was built by integrating five sub-networks: 'paper and its citation network', 'paper and author network', 'paper and journal network', 'co-authorship network', and 'author and affiliation network'. The Random Forest machine learning model was employed to evaluate the impact of individual papers within the mathematics education research network. The SHAP, an XAI model, was used to analyze the reasons behind the AI's assessment of impactful papers. Key features identified for determining impactful papers in the field of mathematics education through the XAI included 'paper network PageRank', 'changes in citations per paper', 'total citations', 'changes in the author's h-index', and 'citations per paper of the journal'. It became evident that papers, authors, and journals play significant roles when evaluating individual papers. When analyzing and comparing domestic and international mathematics education research, variations in these discernment patterns were observed. Notably, the significance of 'co-authorship network PageRank' was emphasized in domestic mathematics education research. The XAI model proposed in this study serves as a tool for determining the impact of papers using AI, providing researchers with strategic direction when writing papers. For instance, expanding the paper network, presenting at academic conferences, and activating the author network through co-authorship were identified as major elements enhancing the impact of a paper. Based on these findings, researchers can have a clear understanding of how their work is perceived and evaluated in academia and identify the key factors influencing these evaluations. This study offers a novel approach to evaluating the impact of mathematics education papers using an explainable AI model, traditionally a process that consumed significant time and resources. This approach not only presents a new paradigm that can be applied to evaluations in various academic fields beyond mathematics education but also is expected to substantially enhance the efficiency and effectiveness of research activities.

Explainable Artificial Intelligence (XAI) Surrogate Models for Chemical Process Design and Analysis (화학 공정 설계 및 분석을 위한 설명 가능한 인공지능 대안 모델)

  • Yuna Ko;Jonggeol Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.542-549
    • /
    • 2023
  • Since the growing interest in surrogate modeling, there has been continuous research aimed at simulating nonlinear chemical processes using data-driven machine learning. However, the opaque nature of machine learning models, which limits their interpretability, poses a challenge for their practical application in industry. Therefore, this study aims to analyze chemical processes using Explainable Artificial Intelligence (XAI), a concept that improves interpretability while ensuring model accuracy. While conventional sensitivity analysis of chemical processes has been limited to calculating and ranking the sensitivity indices of variables, we propose a methodology that utilizes XAI to not only perform global and local sensitivity analysis, but also examine the interactions among variables to gain physical insights from the data. For the ammonia synthesis process, which is the target process of the case study, we set the temperature of the preheater leading to the first reactor and the split ratio of the cold shot to the three reactors as process variables. By integrating Matlab and Aspen Plus, we obtained data on ammonia production and the maximum temperatures of the three reactors while systematically varying the process variables. We then trained tree-based models and performed sensitivity analysis using the SHAP technique, one of the XAI methods, on the most accurate model. The global sensitivity analysis showed that the preheater temperature had the greatest effect, and the local sensitivity analysis provided insights for defining the ranges of process variables to improve productivity and prevent overheating. By constructing alternative models for chemical processes and using XAI for sensitivity analysis, this work contributes to providing both quantitative and qualitative feedback for process optimization.