• Title/Summary/Keyword: SHANK3

Search Result 160, Processing Time 0.024 seconds

Muscle-Induced Accelerations of Body Segments (근육의 힘이 신체 각 부분의 가속도에 미치는 영향)

  • Khang, Gon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1967-1974
    • /
    • 1991
  • When the functional electrical stimulation is employed to recover mobility to the plegic, it is very important to understand functions of the selected muscles. I have investigated how a muscle acts to accelerate the body segments, since the body segements are connected by joints so that contraction of a muscle not only rotates the segments to which it is attached but also causes other segments to rotate by creation a reaction force at every joint, which is called the inertial coupling. I found that a single-joint muscle always acts to accelerate the spanned joint in the same direction as the joint torque produced by the muscle. However, a double-joint muscle can act to accelerate the spanned joint in the opposite direction to the joint torque produced by the muscle depending on (1) the body position, (2) the body-segmental parameters, and (3) the type of the movement. Investigating the condition number of the inertia matrix of the body-segmental model gave us some insights into how controllable the body-segmental system is for different values of the factors mentioned above. The results suggested that the upright position is the most undesirable position to independently control the three segments(trunk, thigh and shank) and that the controllability is the most sensitive to variation of the shank length and the trunk mass, which implies that accuracy is required particularly when we estimate these two body-segmental parameters before the paralyzed muscles are innervated by using electrical stimulation.

Influence of Dietary Natural and Synthetic figments on Growth Performances, Skin Pigmentation and Color Difference in Broiler Chicks (천연 및 합성 착색제의 첨가가 브로일러의 육성성적, 착색도 및 육색 변화에 미치는 영향)

  • 김창혁;김혜정;함영훈;이성기;이규호
    • Korean Journal of Poultry Science
    • /
    • v.30 no.1
    • /
    • pp.35-40
    • /
    • 2003
  • This experiment was conducted to investigate the effects of natural and synthetic commercial pigments on the growth performances, skin pigmentation and color difference of broiler chicks. Experimental diet was formulated to have isocalories and isonitrogen for experimental period, and xanthophyll concentration in the diet was 8.45g/1on. The experiment was conducted for six weeks with 450 broiler chicks. The birds were assigned to 10 treatment groups and each group had 15 chicks with three replications. Results showed that the types of pigments did not have any effect on body weight, feed intake and feed efficiency. The mortality was lower with higher pigment supplementation and greater in the natural pigment groups than in the synthetic ones. Dressed carcass, abdominal fat pad and gizzard weight were not significantly different among treatments. The pigmentation of shank skin was increased with high pigment supplementations, and the pigmentation effect was greater with synthetic pigments than in natural pigments. In the shank meat or skin, the color difference(L*, a*, b*, c* and h*) was not consistently related to pigmentation.

Verification of Tool Collision for 3-Axis Milling (3축 밀링 가공의 공구 충돌 검증)

  • Chung, Yun-C.;Park, Jung-W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.116-121
    • /
    • 2001
  • Verification of tool collision is an important issue in die and mold machining. In this paper three functions of verification are schematically explained based on Z-Map model. The first function is getting a collision-free region when a tool assembly and a part surface model are given. The second function estimates the shortest length of cutter shank with that the tool cuts all of a region without collision. The last one is cutting simulation considering all parts of tool assembly as well as cutter blade. Those functions can be easily implemented by using several basic operators of Z-Map model which are explained also. Proposed approaches have enough accuracy to verify collision in reasonable computing time.

  • PDF

Study on the dynamic stiffness variation of boring bar by Taguchi Method (다구찌 방법을 이용한 보링바의 동강성 변동에 관한 연구)

  • Chun, Se-Ho;Ko, Tae-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.98-104
    • /
    • 2009
  • The objective of this paper is to investigate the effect of factors on the dynamic stiffness variation of boring bar. The experiment was carried out by Taguchi Method and Orthogonal array table. The results indicate that overhang was found out to be dominant factor with 95% confident intervals and feed rate and depth of cut were insignificant. In addition, analysis of loss function shows that loss value increased sharply from 3D to 4D(D is a shank diameter). Consequently, there is critical point which changes property of dynamic stiffness.

  • PDF

평행식 진동탄환 암거 천공기의 연구 (IV)(V)-실기 설계 제작 및 보장실험-Development of Balanced-Type Oscillating Mole Drainer(IV)(V)

  • 김용환;이승규;서상용
    • Journal of Biosystems Engineering
    • /
    • v.2 no.1
    • /
    • pp.7-24
    • /
    • 1977
  • This paper is the forth and fifth one of the study on balanced type oscillating mole drainer. In the light of the results from previous reports about the model tests, some design criteria were established and a prototype machine was set up for experimental purpose. Motion characteristics and functionof the each parts of the machine were checked and analyzed. After that, performance tests of the prototype machine were carried out in thefield. Obtained results are summarized as follows ; 1. Ten centimeter of the bullet diameter was determined so as to be able to attach it to the tractors with capacity of 30 PS to 40 PS. 2. To maintain the balance between the moments of the front shank and rear shank, the oscillating amplitude of the rear bullet was determined to be larger than that of the front bullet. At the same time , the oscillating direction of the rear bullet was designed with the inclines of ten to thirty degrees. 3. An octagonal dynamo transduced was developed for measuring the compressive force of the upper link is measuring the draft force of the machine. Acceptable linear relationship between forces and strain responses from O.D.T. was obtained. 4. Analysing the balancing mechanism of the acting part of the machine , it was found that the total draft force of the machine was equal to the difference between the sum of the draft force produced from the right and left side bending moments of the lower drawber and the compressive force on the upper link. 5. There are acceptable linear relationship between the strain and twisting moment by driving shaft, and between strain and shank moment. Above results enable us to carry out the field experiment with prototype machine. 6. When the test machine was used in the field, it was possible to reduce the oscillating acceleration by forty percent in average as compared it with the single bullet mole drainer. 7. When the test machine was used under the oscillating condition, the dratt torce was reduced by 27 percent to 59 percent as compared it with the test machine under non-oscillating condition, while the draft force was increased by 7 percent to 20 percent as compared it with the mole drainer having oscillating single bullet. The reasoning behind this fact was considered as the resistance force due to the rear shank and bullet. 8. As the amplitude and frequency of the bullet were increased, the torque was increased accordingly. This tendency could be varied with the various characteristics of the given soils. And the larger frequency and amplitute, the more increasing oscil\ulcornerlating power but decreasing draft brce were needed, and draft force was increased as the velocity was increased.9. When the amplitude of the rear bullet was designed to be larger than that of the front bullet, the minimum value of the moment was lowered and oscillating acceleration was reduced. And when the oscillating direction of the rear bullet was declined back\ulcornerwards, oscillating acceleration was increased along with the increasing angle of decli\ulcornernation. When the test machine was operated in high speed, the difference between maximum moments and minimum ones became narrow. This varying magnitude of moments appeared on the moment oscillogram seems to be correlated to the oscillating acceleration and draft force. 10. From the analysis of variance, it was found that those factors such as frequency, amplitude, and operating velocity significantly affected in the oscillating acceleration, the draft resistance, the torque, the moment, and the total power required. And interaction between frequency and amplitude affected in the oscillating acceleration. 11. Within the given situation of this study, the most preferable operating conditions of the test machine were 7 Hz in oscillating frequency, 0.54 m/sec in operating velocity, and 39.1 mm in oscillating amplitude of front and rear bullets. However, it is necessary to select the proper frequency and magnitude of oscillation depending on the soil properties of the field in which the mole drainer is practiced by use of a bal1nced type oscillating mole drainer. 12. It is recommended that a comparative study of the mole drainers would be performed in the near future using two separate balanced oscillating bullet with the one which is operated by oscillating the movable bullet in a single cylinder or other balanced type which may be single oscillating bullet with spring, damper or balancing weight, and that of thing. To expand the applicability of the balanced type oscillating mole drainer in practical use, it is suggested to develop a new mechanism which perform mole drain with vinyl pipe or filling material such as rice hull.

  • PDF

Isomeric Effects on Volatilization of 1,3-Dichloropropene Fumigant in Soil

  • Kim, Jung-Ho;Mallavarapu, Megharaj
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1325-1330
    • /
    • 2009
  • The fumigant 1,3-dichloropropene (1,3-D) was recently proposed as a direct replacement for methyl bromide ($CH_3Br$) in soil fumigation. This study was conducted to better understand behavior phase partitioning, diffusion and volatilization of 1,3-D as affected by isomer. The Henry's law constant(KH) of cis-1,3-D and trans-1,3-D was 0.058 and 0.037 at $20^{\circ}C$, respectively. $K_H$ of cis form of 1,3-D was higher than that of trans form of 1,3-D. To compare with volatilization of 1,3-D isomer, soil column [70 cm (length)${\times}$12 cm (i.d.)] included a shank injection at 30 cm with 300 kg $ha^{-1}$. Maximum cis-1,3-D and trans-1,3-D concentration reached 57 mg $L^{-1}$ and 39 mg $L^{-1}$ at 30 cm depth at 1h after application. Cumulatively, after 10 days, 51.8% and 43.57% of applied cis-1,3-D and trans-1,3-D was emitted via volatilization, respectively. The total losses of cis-1,3-D were significantly greater than that of trans-1,3-D. Finally, cis-1,3-D and trans-1,3-D, such as isomer are dominant of 1,3-D fates in soil.

Phelan-McDermid syndrome presenting with developmental delays and facial dysmorphisms

  • Kim, Yoon-Myung;Choi, In-Hee;Kim, Jun Suk;Kim, Ja Hye;Cho, Ja Hyang;Lee, Beom Hee;Kim, Gu-Hwan;Choi, Jin-Ho;Seo, Eul-Ju;Yoo, Han-Wook
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.25-28
    • /
    • 2016
  • Phelan-McDermid syndrome is a rare genetic disorder caused by the terminal or interstitial deletion of the chromosome 22q13.3. Patients with this syndrome usually have global developmental delay, hypotonia, and speech delays. Several putative genes such as the SHANK3, RAB, RABL2B, and IB2 are responsible for the neurological features. This study describes the clinical features and outcomes of Korean patients with Phelan-McDermid syndrome. Two patients showing global developmental delay, hypotonia, and speech delay were diagnosed with Phelan-McDermid syndrome via chromosome analysis, fluorescent in situ hybridization, and multiplex ligation-dependent probe amplification analysis. Brain magnetic resonance imaging of Patients 1 and 2 showed delayed myelination and severe communicating hydrocephalus, respectively. Electroencephalography in patient 2 showed high amplitude spike discharges from the left frontotemporoparietal area, but neither patient developed seizures. Kidney ultrasonography of both the patients revealed multicystic kidney disease and pelviectasis, respectively. Patient 2 experienced recurrent respiratory infections, and chest computed tomography findings demonstrated laryngotracheomalacia and bronchial narrowing. He subsequently died because of heart failure after a ventriculoperitoneal shunt operation at 5 months of age. Patient 1, who is currently 20 months old, has been undergoing rehabilitation therapy. However, global developmental delay was noted, as determines using the Korean Infant and Child Development test, the Denver developmental test, and the Bayley developmental test. This report describes the clinical features, outcomes, and molecular genetic characteristics of two Korean patients with Phelan-McDermid syndrome.

Analysis of human gait using inverse kinematics (역기구학을 이용한 보행 분석)

  • 최경암;정민근;염영일
    • Journal of the Ergonomics Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.3-14
    • /
    • 1994
  • In this study, the human gait trajectories during normal walking were synthesized using the inverse kinematics and optimization techniques. The synthesis is based on a gait model consisting of a torso and two legs. Each let has three segments: thigh, shank, foot, and has six degrees-of-freedom. In order to synthesize trajectories of this redundant system, the sum of angular displacements of articulating joints was selected as an objective function to be minimized. The proposed algorithm in this study is very useful for the analysis of human gait. For the gait analysis, the trajectories of four points in each leg should be measured. Hpwever, by using the algorithm, measuring the trajectories of two points is sufficient, and thus the experimental set-up can be simplified.

  • PDF

Comparison of Spectral Analysis Methods of Prosthetic Heart Valve Sound (인공판막의 판막음 스펙트럼 분석방법 비교)

  • Lee, H.J.;Kim, S.H.;Chang, B.C.;Tack, G.;Cho, B.K.;Yoo, S.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.402-405
    • /
    • 1997
  • The analysis of heart sounds is a noninvasive diagnostic method useful to diagnose heart valve function. In this paper we compared the ability of spectral analysis method for prosthetic heart valve sounds. Phonocardiograms of prosthetic heart valve were analyzed in order to derive frequency domain feature suitable for the classification of the valve state. The FFT-based methods did not provide sufficient frequency resolution to completely characterize the spectrum of prosthetic heart valve sounds. A high resolution parametric methods were shown to give superior frequency resolution. In parametric methods, all methods provide a 1st & 2nd & 3rd frequency component. But Shank method provided a most dominant frequency peak.

  • PDF

Development of Three-Dimensional Contact Model of Human Knee Joint During Locomotion (보행 중 인체 슬관절의 3차원 접촉 모델 개발)

  • Kim, Hyo-Shin;Park, Seong-Jin;Mun, Joung-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.11 s.176
    • /
    • pp.182-189
    • /
    • 2005
  • The human knee joint is the intermediate joint of the lower limb that is the largest and most complex joint in the body. Understanding of joint-articulating surface motion is essential for the joint wear, stability, mobility, degeneration, determination of proper diagnosis and so on. However, many studies analyzed the passive motion of the lower limb because of the skin marker artefact and some studies described medial and lateral condyle of a femur as a simple sphere due to the complexity of geometry. Thus, in this paper, we constructed a three-dimensional geometric model of the human knee from the geometry of its anatomical structures using non-uniform B-spline surface fitting as a study for the kinematic analysis of more realistic human knee model. In addition, we developed and verified 6-DOF contact model of the human knee joint using $C^2$ continuous surface of the inferior region of a femur, considering the relative motion of shank to thigh during locomotion.