• 제목/요약/키워드: SH-SY5Y neuroblastoma cell

검색결과 96건 처리시간 0.024초

Ginsenoside Rg1 및 Rb1을 처리한 신경세포주(SH-SY5Y세포)의 유전자 발현양상 (Gene Expression Profiling of SH-SY5Y Human Neuroblastoma Cells Treated with Ginsenoside Rg1 and Rb1)

  • 이준노;양병환;최승학;김석현;채영규;정경화;이준석;최강주;김영숙
    • 생물정신의학
    • /
    • 제12권1호
    • /
    • pp.42-61
    • /
    • 2005
  • Objectives:The ginsenoside Rg1 and Rb1, the major components of ginseng saponin, have neurotrophic and neuroprotective effects including promotion of neuronal survival and proliferation, facilitation of learning and memory, and protection from ischemic injury and apoptosis. In this study, to investigate the molecular basis of the effects of ginsenoside on neuron, we analyzed gene expression profiling of SH-SY5Y human neuroblastoma cells treated with ginsenoside Rg1 or Rb1. Methods:SH-SY5Y cells were cultured and treated in triplicate with ginsenoside Rg1 or Rb1($80{\mu}M$, $40{\mu}M$, $20{\mu}M$). The proliferation rates of SH-SY5Y cells were determined by MTT assay and microscopic examination. We used a high density cDNA microarray chip that contained 8K human genes to analyze the gene expression profiles in SH-SY5Y cells. We analyzed using the Significance Analysis of Microarray(SAM) method for identifying genes on a microarray with statistically significant changes in expression. Results:Treatment of SH-SY5Y cells with $80{\mu}M$ ginsenoside Rg1 or Rb1 for 36h showed maximal proliferation compared with other concentrations or control. The results of the microarray experiment yielded 96 genes were upregulated(${\geq}$3 fold) in Rg1 treated cells and 40 genes were up-regulated(${\geq}$2 fold) in Rb1 treated cells. Treatment with ginsenoside Rg1 for 36h induced the expression of some genes associated with protein biosynthesis, regulation of transcription or translation, cell proliferation and growth, neurogenesis and differentiation, regulation of cell cycle, energy transport and others. Genes associated with neurogenesis and neuronal differentiation such as SCG10 and MLP increased in ginsenoside Rg1 treated cells, but such changes did not occur in Rb1-group. Conclusion:Our data provide novel insights into the gene mechanisms involved in possible role for ginsenoside Rg1 or Rb1 in mediating neuronal proliferation or cell viability, which can elicit distinct patterns of gene expression in neuronal cell line. Ginsenoside Rg1 have more broad and strong effects than ginsenoside Rb1 in gene expression and related cellular physiology. In addition, we suggest that SCG10 gene, which is known to be expressed in neuronal differentiation during development and neuronal regeneration during adulthood, may have a role in enhancement of activity dependent synaptic plasticity or cytoskeletal regulation following treatment of ginsenoside Rg1. Further, ginsenoside Rg1 may have a possible role in regeneration of injured neuron, promotion of memory, and prevention from aging or neuronal degeneration.

  • PDF

Corticosterone에 의해 유도된 인간의 신경모세포종 SH-SY5Y 세포 증식 억제를 완화시키는 맥문동 열수 추출물의 효과에 관한 연구 (Attenuation of the Corticosterone-induced Antiproliferative Effect on Human Neuroblastoma SH-SY5Y Cells Using Hot-water Extract from Liriope muscari)

  • 이종규;김상보;서용배;김군도
    • 생명과학회지
    • /
    • 제28권5호
    • /
    • pp.517-523
    • /
    • 2018
  • 만성적 스트레스가 있는 상황에서, 과잉 생산된 cortisol은 glucocorticoid receptor (GR)를 활성화시킴으로써 해마(hippocampus)에 있는 신경 세포에 손상을 줄 수 있다. Cortisol을 생성하지 못하는 동물들의 경우, corticosterone이 스트레스 호르몬의 역할을 하는 것으로 알려져 있다. 한편, 인간의 경우, corticosterone은 aldosterone의 전구물질 이거나 cortisol과 비슷한 특성을 가지는 하나의 glucocorticoid로만 여겨져 왔다. 최근 인간을 대상으로 cortisol과 dexamethasone과 같은 합성 glucocorticoid의 기능에 관한 연구가 많이 이루어져 왔으나, corticosterone의 정확한 기능에 대하여 많이 알려져 있지 않다. 본 연구에서 corticosterone을 여러 농도로 SH-SY5Y 세포에 처리한 후 24시간과 48시간 때 viability를 조사한 결과, 높은 농도($500{\mu}M$$1,000{\mu}M$)에서 SH-SY5Y 세포의 성장 억제가 관찰된 반면, 낮은 농도($100{\mu}M$)에선 그 효과가 나타나지 않았다. 맥문동, 오미자, 복신 열수 추출물에 대한 세포 독성을 실시한 결과, 세 시료 모두 농도가 높아질수록 높은 세포 독성을 보였다. 한편, $500{\mu}g/ml$의 맥문동은 corticosterone에 의해 유도된 세포 성장 억제를 완화시켜 세포 성장을 회복시키는 효과를 보였다. 마지막으로, 맥문동 $500{\mu}g/ml$에 오미자와 복신의 농도를 달리하여 제조한 여러 혼합물의 시너지 효과를 알아본 결과, 대부분 혼합물이 약간의 효과를 보이긴 했으나, 음성 대조군 수준만큼 회복되지는 않았다.

Neuroprotective effects of hesperetin on H2O2-induced damage in neuroblastoma SH-SY5Y cells

  • Ha-Rin Moon;Jung-Mi Yun
    • Nutrition Research and Practice
    • /
    • 제17권5호
    • /
    • pp.899-916
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Oxidative stress is a fundamental neurodegenerative disease trigger that damages and decimates nerve cells. Neurodegenerative diseases are chronic central nervous system disorders that progress and result from neuronal degradation and loss. Recent studies have extensively focused on neurodegenerative disease treatment and prevention using dietary compounds. Heseperetin is an aglycone hesperidin form with various physiological activities, such as anti-inflammation, antioxidant, and antitumor. However, few studies have considered hesperetin's neuroprotective effects and mechanisms; thus, our study investigated this in hydrogen peroxide (H2O2)-treated SH-SY5Y cells. MATERIALS/METHODS: SH-SY5Y cells were treated with H2O2 (400 µM) in hesperetin absence or presence (10-40 µM) for 24 h. Three-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell viability, and 4',6-diamidino-2-phenylindole staining allowed us to observe nuclear morphology changes such as chromatin condensation and apoptotic nuclei. Reactive oxygen species (ROS) detection assays measured intracellular ROS production; Griess reaction assays assessed nitric oxide (NO) production. Western blotting and quantitative polymerase chain reactions quantified corresponding mRNA and proteins. RESULTS: Subsequent experiments utilized various non-toxic hesperetin concentrations, establishing that hesperetin notably decreased intracellular ROS and NO production in H2O2-treated SH-SY5Y cells (P < 0.05). Furthermore, hesperetin inhibited H2O2-induced inflammation-related gene expression, including interluekin-6, tumor necrosis factor-α, and nuclear factor kappa B (NF-κB) p65 activation. In addition, hesperetin inhibited NF-κB translocation into H2O2-treated SH-SY5Y cell nuclei and suppressed mitogen-activated protein kinase protein expression, an essential apoptotic cell death regulator. Various apoptosis hallmarks, including shrinkage and nuclear condensation in H2O2-treated cells, were suppressed dose-dependently. Additionally, hesperetin treatment down-regulated Bax/Bcl-2 expression ratios and activated AMP-activated protein kinase-mammalian target of rapamycin autophagy pathways. CONCLUSION: These results substantiate that hesperetin activates autophagy and inhibits apoptosis and inflammation. Hesperetin is a potentially potent dietary agent that reduces neurodegenerative disease onset, progression, and prevention.

Virtual Screening and Testing of GSK-3 Inhibitors Using Human SH-SY5Y Cells Expressing Tau Folding Reporter and Mouse Hippocampal Primary Culture under Tau Cytotoxicity

  • Chih-Hsin Lin;Yu-Shao Hsieh;Ying-Chieh Sun;Wun-Han Huang;Shu-Ling Chen;Zheng-Kui Weng;Te-Hsien Lin;Yih-Ru Wu;Kuo-Hsuan Chang;Hei-Jen Huang;Guan-Chiun Lee;Hsiu Mei Hsieh-Li;Guey-Jen Lee-Chen
    • Biomolecules & Therapeutics
    • /
    • 제31권1호
    • /
    • pp.127-138
    • /
    • 2023
  • Glycogen synthase kinase-3β (GSK-3β) is an important serine/threonine kinase that implicates in multiple cellular processes and links with the neurodegenerative diseases including Alzheimer's disease (AD). In this study, structure-based virtual screening was performed to search database for compounds targeting GSK-3β from Enamine's screening collection. Of the top-ranked compounds, 7 primary hits underwent a luminescent kinase assay and a cell assay using human neuroblastoma SH-SY5Y cells expressing Tau repeat domain (TauRD) with pro-aggregant mutation ΔK280. In the kinase assay for these 7 compounds, residual GSK-3β activities ranged from 36.1% to 90.0% were detected at the IC50 of SB-216763. In the cell assay, only compounds VB-030 and VB-037 reduced Tau aggregation in SH-SY5Y cells expressing ΔK280 TauRD-DsRed folding reporter. In SH-SY5Y cells expressing ΔK280 TauRD, neither VB-030 nor VB-037 increased expression of GSK-3α Ser21 or GSK-3β Ser9. Among extracellular signal-regulated kinase (ERK), AKT serine/threonine kinase 1 (AKT), mitogen-activated protein kinase 14 (P38) and mitogenactivated protein kinase 8 (JNK) which modulate Tau phosphorylation, VB-037 attenuated active phosphorylation of P38 Thr180/ Tyr182, whereas VB-030 had no effect on the phosphorylation status of ERK, AKT, P38 or JNK. However, both VB-030 and VB-037 reduced endogenous Tau phosphorylation at Ser202, Thr231, Ser396 and Ser404 in neuronally differentiated SH-SY5Y expressing ΔK280 TauRD. In addition, VB-030 and VB-037 further improved neuronal survival and/or neurite length and branch in mouse hippocampal primary culture under Tau cytotoxicity. Overall, through inhibiting GSK-3β kinase activity and/or p-P38 (Thr180/Tyr182), both compounds may serve as promising candidates to reduce Tau aggregation/cytotoxicity for AD treatment.

금불초 추출물의 항산화 효과 및 산화 스트레스에 대한 신경세포 보호작용 (Antioxidant Properties and Protective Effects of Inula britannica var. chinensis Regel on Oxidative Stress-induced Neuronal Cell Damage)

  • 이나현;홍정일;김진영;장매희
    • 한국식품과학회지
    • /
    • 제41권1호
    • /
    • pp.87-92
    • /
    • 2009
  • 본 연구에서는 금불초(Inula britannica) 추출물의 항산화 효과와 ${H_2}{O_2}$로부터 유도된 SH-SY5Y 신경모세포종의 세포독성에 대한 보호능을 측정하였다. 금불초 지상부위의 70% 메탄올 추출물에 대하여 용매별로 분획을 실시하였고 핵산(Fr.H), 에틸아세테이트(Fr.EA) 및 물(Fr.W) 분획에 대하여 활성을 조사하였다. 분획 중 Fr.W의 폴리페놀/플라보노이드 함량이 가장 높았으며 Fr.W의 총 폴리페놀 함량은 $318.1{\pm}20.6{\mu}g$/mg solid로, Fr.EA 및 Fr.H와 비교하여 각각 약 2.5배, 23.1배 수준이었다. DPPH radical, ABTS radical 및 nitric oxide 소거능 등의 항산화 활성에서도 Fr.W가 가장 높은 활성을 나타내었고 Fr.H는 거의 활성을 나타내지 않았다. Fr.W는 ${H_2}{O_2}$에 의해 유도된 세포사멸에 대하여 62.5 ${\mu}g$/mL 농도에서 현저하게 세포독성을 감소시켰으며 250 ${\mu}g$/mL에서는 77.0%의 세포사멸 억제능을 보였다. Fr.EA는 보호 효과를 나타 내지 않았으며 Fr.H는 오히려 ${H_2}{O_2}$로 인한 세포 독성을 증가시키는 것으로 나타났다. 세포 내 ROS에 대한 영향으로 Fr.W 250 ${\mu}g$/mL 처리시 39.2% 세포내 ROS를 감소시켰으며 Fr.EA는 25 ${\mu}g$/mL에서 26.8%의 세포내 ROS를 소거하였다. 이러한 금불초 Fr.W의 항산화 활성은 ROS에 의해 야기되는 뇌세포 독성에 대한 보호 작용에 공헌할 수 있을 것으로 예상된다.

Preventive effects of crocin on neuronal damages induced by D-galactose through AGEs and oxidative stress in human neuroblastoma cells (SH-SY5Y)

  • Heidari, Somaye;Mehri, Soghra;Shariaty, Vahidesadat;Hosseinzadeh, Hossein
    • 대한약침학회지
    • /
    • 제21권1호
    • /
    • pp.18-25
    • /
    • 2018
  • Objective: D-galactose (D-gal) is well-known agent to induce aging process. In the present study, we selected crocin, the main constituent of Crocus sativus L. (saffron), against D-gal- induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Methods: Pretreated cells with crocin ($25-500{\mu}M$, 24 h) were exposed to D-gal (25-400 mM, 48 h). The MTT assay was used for determination cell viability. Dichlorofluorescin diacetate assay (DCF-DA) and senescence associated ${\beta}$-galactosidase staining assay (SA-${\beta}$-gal) were used to evaluate the generation of reactive oxygen species and beta-galactosidase as an aging marker, respectively. Also advanced glycation end products (AGEs) expression which is known as the main mechanism of age-related diseases was measured by western blot analysis. Results: The findings of our study showed that treatment of cells with D-gal (25-400 mM) for 48h decreased cell viability concentration dependency. Reactive oxygen species (ROS) levels which are known as main factors in age-related diseases increased from $100{\pm}8%$ in control group to $132{\pm}22%$ in D-gal (200 mM) treated cells for 48h. The cytotoxic effects of D-gal decreased with 24h crocin pretreatment of cells. The cell viability at concentrations of $100{\mu}M$, $200{\mu}M$ and $500{\mu}M$ increased and ROS production decreased at concentrations of 200 and $500{\mu}M$ to $111.5{\pm}6%$ and $108{\pm}5%$, respectively. Also lysosomal biomarker of aging and carboxymethyl lysine (CML) expression as an AGE protein, significantly increased in D-gal 200 mM group after 48h incubation compare to control group. Pre-treatment of SHSY-5Y cells with crocin ($500{\mu}M$) before adding D-gal significantly reduced aging marker and CML formation. Conclusion: Treatment of SH-SY5Y cells with crocin before adding of D-gal restored aging effects of D-gal concentration dependency. These findings indicate that crocin has potent anti- aging effects through inhibition of AGEs and ROS production.

Oxidative stress-induced aberrant G9a activation disturbs RE-1-containing neuron-specific genes expression, leading to degeneration in human SH-SY5Y neuroblastoma cells

  • Kim, Ho-Tae;Ohn, Takbum;Jeong, Sin-Gu;Song, Anji;Jang, Chul Ho;Cho, Gwang-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권1호
    • /
    • pp.51-58
    • /
    • 2021
  • Oxidative stress-induced neurodegeneration is one of several etiologies underlying neurodegenerative disease. In the present study, we investigated the functional role of histone methyltransferase G9a in oxidative stress-induced degeneration in human SH-SY5Y neuroblastoma cells. Cell viability significantly decreased on H2O2 treatment; however, treatment with the G9a inhibitor BIX01294 partially attenuated this effect. The expression of neuron-specific genes also decreased in H2O2-treated cells; however, it recovered on G9a inhibition. H2O2-treated cells showed high levels of H3K9me2 (histone H3 demethylated at the lysine 9 residue), which is produced by G9a activation; BIX01294 treatment reduced aberrant activation of G9a. H3K9me2 occupancy of the RE-1 site in neuron-specific genes was significantly increased in H2O2-treated cells, whereas it was decreased in BIX01294-treated cells. The differentiation of H2O2-treated cells also recovered on G9a inhibition by BIX01294. Consistent results were observed when used another G9a inhibitor UCN0321. These results demonstrate that oxidative stress induces aberrant activation of G9a, which disturbs the expression of neuron-specific genes and progressively mediates neuronal cell death. Moreover, a G9a inhibitor can lessen aberrant G9a activity and prevent neuronal damage. G9a inhibition may therefore contribute to the prevention of oxidative stress-induced neurodegeneration.

Protective Role of Tissue Transglutaminase in the Cell Death Induced by TNF-α in SH-SY5Y Neuroblastoma Cells

  • Kweon, Soo-Mi;Lee, Zee-Won;Yi, Sun-Ju;Kim, Young-Myeong;Han, Jeong-A;Paik, Sang-Gi;Ha, Kwon-Soo
    • BMB Reports
    • /
    • 제37권2호
    • /
    • pp.185-191
    • /
    • 2004
  • Tissue transglutaminase (tTGase) regulates various biological processes, including extracellular matrix organization, cellular differentiation, and apoptosis. Here we report the protective role of tTGase in the cell death that is induced by the tumor necrosis factor $\alpha$ (TNF-$\alpha$) and ceramide, a product of the TNF-$\alpha$ signaling pathway, in human neuroblastoma SH-SY5Y cells. Treatment with retinoic acid (RA) induced the differentiation of the neuroblastoma cells with the formation of extended neurites. Immunostaining and Western blot analysis showed the tTGase expression by RA treatment. TNF-$\alpha$ or $C_2$ ceramide, a cell permeable ceramide analog, induced cell death in normal cells, but cell death was largely inhibited by the RA treatment. The inhibition of tTGase by the tTGase inhibitors, monodansylcadaverine and cystamine, eliminated the protective role of RA-treatment in the cell death that is caused by TNF-$\alpha$ or $C_2$-ceramide. In addition, the co-treatment of TNF-$\alpha$ and cycloheximide ecreased the protein level of tTGase and cell viability in the RA-treated cells, supporting the role of tTGase in the protection of cell death. DNA fragmentation was also induced by the co-treatment of TNF-$\alpha$ and cycloheximide. These results suggest that tTGase expressed by RA treatment plays an important role in the protection of cell death caused by TNF-$\alpha$ and ceramide.