• Title/Summary/Keyword: SG(steam generator) tube

Search Result 93, Processing Time 0.029 seconds

Fundamental evaluation of hydrogen behavior in sodium for sodium-water reaction detection of sodium-cooled fast reactor

  • Tomohiko Yamamoto;Atsushi Kato;Masato Hayakawa;Kazuhito Shimoyama;Kuniaki Ara;Nozomu Hatakeyama;Kanau Yamauchi;Yuhei Eda;Masahiro Yui
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.893-899
    • /
    • 2024
  • In a secondary cooling system of a sodium-cooled fast reactor (SFR), rapid detection of hydrogen due to sodium-water reaction (SWR) caused by water leakage from a heat exchanger tube of a steam generator (SG) is important in terms of safety and property protection of the SFR. For hydrogen detection, the hydrogen detectors using atomic transmission phenomenon of hydrogen within Ni-membrane were used in Japanese proto-type SFR "Monju". However, during the plant operation, detection signals of water leakage were observed even in the situation without SWR concerning temperature up and down in the cooling system. For this reason, the study of a new hydrogen detector has been carried out to improve stability, accuracy and reliability. In this research, the authors focus on the difference in composition of hydrogen and the difference between the background hydrogen under normal plant operation and the one generated by SWR and theoretically estimate the hydrogen behavior in liquid sodium by using ultra-accelerated quantum chemical molecular dynamics (UA-QCMD). Based on the estimation, dissolved H or NaH, rather than molecular hydrogen (H2), is the predominant form of the background hydrogen in liquid sodium in terms of energetical stability. On the other hand, it was found that hydrogen molecules produced by the sodium-water reaction can exist stably as a form of a fine bubble concerning some confinement mechanism such as a NaH layer on their surface. At the same time, we observed experimentally that the fine H2 bubbles exist stably in the liquid sodium, longer than previously expected. This paper describes the comparison between the theoretical estimation and experimental results based on hydrogen form in sodium in the development of the new hydrogen detector in Japan.

Signal Analysis of Eddy Current Test Using T/R Coil Probe for Inspection of Steam Generator Tube in NPP (T/R코일프로브를 이용한 원전 SG세관 검사의 와전류탐상 신호해석)

  • Lim, Geon-Gyu;Lee, Hyang-Beom
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.159-165
    • /
    • 2008
  • In this paper the signal analysis of eddy current test using transmit-receive(T/R) pancake coil of ECT array probe using electromagnetic finite element method(FEM) is performed. For characteristics analysis, the notch defect is used. The depth of defect is 40[%] of steam generator tube thickness, and inside defect and outside defect are used as simulation examples. The signal analysis is performed according to the variation of receive coil position. The receive coil is positioned $0[^{\circ}]$, $30[^{\circ}]$, $60[^{\circ}]$, $90[^{\circ}]$ of circumferential position of transmit coil. To obtain e electromagnetic characteristics of robes, the governing equation is derived from Maxwell's equations, and the problem is solved using the 3-dimensional finite element method. The signal magnitude of inside defect is bigger than that of outside defect, and the signal difference can be seen according to the variation of position of receive coil. The experimental signal and numerical signal of ASME standard tube show similar results. The results in this paper can be helpful when the ECT signals from ECT array probe are evaluated and analyzed.

Development of an Entrainment Model for the Steam Line Break Mass and Energy Release Analysis

  • Park, Young-Chan;Kim, Yoo
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.101-108
    • /
    • 2003
  • The purpose of this study is to develop an entrainment model of the Pressurized Water Reactor (PWR) U-tube Steam Generator (SG) for Main Steam Line Break (MSLB) analyses. Generally, the temperature of the inside containment vessel at MSLB is decreased by introducing the liquid entrainment effect. This effect makes a profit on the aspect of integrity evaluation for Equipment Environmental Qualification (EEQ) in the containment. However, the target plant, Kori unit 1 does not have the entrainment data. Therefore, this study has been performed. RETRAN-3D and LOFTRAN computer programs are used for the model development. There are several parameters that are used for the initial benchmark, such as Combustion Engineerings (CE) experimental data and the RETRAN-3D model which describes the test leg. A sensitivity study is then performed with this model in which the model parameters are varied until the calculated results provide reasonable agreement with the measured results for the entire test set. Finally, a multiplication factor has been obtained from the 95/95 values of the calculated (best-estimate) quality data relative to the measured quality data. With this new methodology, an additional temperature margin of about 40$^{\circ}C$ can be obtained. So, the new methodology is found to have an explicit advantage to EQ analyses.

Experimental investigation of impact-sliding interaction and fretting wear between tubes and anti-vibration bars in steam generators

  • Guo, Kai;Jiang, Naibin;Qi, Huanhuan;Feng, Zhipeng;Wang, Yang;Tan, Wei
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1304-1317
    • /
    • 2020
  • The tubes in a heat exchanger, such as a steam generator (SG), are subjected to crossflow, and interaction between tubes and supports can happen, which can cause fretting wear of tubes. Although many experiments and models have been established, some detailed mechanisms are still not sufficiently clear. In this work, more attention is paid to obtain the regulation of impact and sliding in the complex process and many factors, such as excitation forces and clearances. The responses and contact forces were analyzed to obtain clear understanding of the influences of these factors. Room temperature tests in the air were established. The results show that the effect of clearance on the normal work rate is not monotonous and instead has two peaks. The force ratio can influence the normal work rate by changing the distribution of contact angles, which can result in higher sliding in the contact process. Fretting wear tests are conducted, and the wear surfaces are analyzed by a scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX). The results of this work can serve as a reference for impactsliding contact analysis between AVBs and tubes in steam generators.

The Analysis of Eddy Current Testing Signals Considering Influence of Ferromagnetic Support Plate (강자성체 지지판의 영향이 고려된 와전류탐상의 신호해석)

  • Kim, Yong-Taek;Lee, Hyang-Beom;Yim, Chang-Jae;Choi, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.50-52
    • /
    • 2005
  • In this paper, the analysis of the eddy current testing(ECT) signals under thc Influence of the ferromagnetic support plate was performed in steam generator(SG) tube of nuclear power plant. In order to remove the influence of the ferromagnetic support plate, a multi-frequency ECT was used. The models which was established for the analysis of the signals is calculated using numerical analysis of finite element method. Through the result of numerical analysis, improved signals is acquired considering the influence of the ferromagnetic support plate using mixing of multi-frequency This paper is presented the residual errors and the phase changes for analysis of the defect signals which should be considered when conducting a ECT using multi-frequency.

  • PDF

CATHARE simulation results of the natural circulation characterisation test of the PKL test facility

  • Salah, Anis Bousbia
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1446-1453
    • /
    • 2021
  • In the past, several experimental investigations aiming at characterizing the natural circulation (NC) behavior in test facilities were carried out. They showed a variety of flow patterns characterized by an inverted U-shape of the NC flow curve versus primary mass inventory. On the other hand, attempts to reproduce such curves using thermal-hydraulic system codes, showed 10-30% differences between the measured and calculated NC mass flow rate. Actually, the used computer codes are generally based upon nodalization using single U-tube representation. Such model may not allow getting accurate simulation of most of the NC phenomena occurring during such tests (like flow redistribution and flow reversal in some SG U-tubes). Simulations based on multi-U-tubes model, showed better agreement with the overall behavior, but remain unable to predict NC phenomena taking place in the steam generator (SG) during the experiment. In the current study, the CATHARE code is considered in order to assess a NC characterization test performed in the four loops PKL facility. For this purpose, four different SG nodalizations including, single and multi-U-tubes, 1D and 3D SG inlet/outlet zones are considered. In general, it is shown that the 1D and 3D models exhibit similar prediction results up to a certain point of the rising part of the inverted U-shape of the NC flow curve. After that, the results bifurcate with, on the one hand, a tendency of the 1D models to over-predict the measured NC mass flow rate and on the other hand, a tendency of the 3D models to under-predict the NC flow rate.

High-Temperature Design of Sodium-to-Air Heat Exchanger in Sodium Test Loop (소듐 시험루프 내 소듐대 공기 열교환기의 고온 설계)

  • Lee, Hyeong-Yeon;Eoh, Jae-Hyuk;Lee, Yong-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.665-671
    • /
    • 2013
  • In a Korean Generation IV prototype sodium-cooled fast reactor (SFR), various types of high-temperature heat exchangers such as IHX (intermediate heat exchanger), DHX (decay heat exchanger), AHX (air heat exchanger), FHX (finned-tube sodium-to-air heat exchanger), and SG (steam generator) are to be designed and installed. In this study, the high-temperature design and integrity evaluation of the sodium-to-air heat exchanger AHX in the STELLA-1 (sodium integral effect test loop for safety simulation and assessment) test loop already installed at KAERI (Korea Atomic Energy Research Institute) and FHX in the SEFLA (sodium thermal-hydraulic experiment loop for finned-tube sodium-to-air heat exchanger) test loop to be installed at KAERI have been performed. Evaluations of creep-fatigue damage based on full 3D finite element analyses were conducted for the two heat exchangers according to the high-temperature design codes, and the integrity of the high-temperature design of the two heat exchangers was confirmed.

Evaluation of Nondestructive Evaluation Size Measurement for Integrity Assessment of Axial Outside Diameter Stress Corrosion Cracking in Steam Generator Tubes (증기발생기 전열관 외면 축균열 건전성 평가를 위한 비파괴검사 크기 측정 평가)

  • Joo, Kyung-Mun;Hong, Jun-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • Recently, the initiation of outside diameter stress corrosion cracking (ODSCC) at the tube support plate region of domestic steam generators (SG) with Alloy600 HTMA tubes has been increasing. As a result, SGs with Alloy600 HTMA tubes must be replaced early or are scheduled to be replaced prior to their designed lifetime. ODSCC is one of the biggest threats to the integrity of SG tubes. Therefore, the accurate evaluation of tube integrity to determine ODSCC is needed. Eddy current testing (ECT) is conducted periodically, and its results could be input as parameters for evaluating the integrity of SG tubes. The reliability of an ECT inspection system depends on the performance of the inspection technique and abilty of the analyst. The detection probability and ECT sizing error of degradation are considered to be the performance indices of a nondestructive evaluation (NDE) system. This paper introduces an optimized evaluation method for ECT, as well as the sizing error, including the analyst performance. This study was based on the results of a round robin program in which 10 inspection analysts from 5 different companies participated. The analysis of ECT sizing results was performed using a linear regression model relating the true defect size data to the measured ECT size data.

Influence Analysis on the Number of Ruptured SG u-tubes During mSGTR in CANDU-6 Plants (중수로 증기발생기 다중 전열관 파단사고시 파단 전열관 수에 대한 영향 분석)

  • Seon Oh Yu;Kyung Won Lee
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.2
    • /
    • pp.37-42
    • /
    • 2022
  • An influence analysis on multiple steam generator tube rupture (mSGTR) followed by an unmitigated station blackout is performed to compare the plant responses according to the number of ruptured u-tubes under the assumption of a total of 10 ruptured u-tubes. In all calculation cases, the transient behaviour of major thermal-hydraulic parameters, such as the discharge flow rate through the ruptured u-tubes, reactor header pressure, and void fraction in the fuel channels is found to be overall similar to that of the base case having a single SG with 10 u-tubes ruptured. Additionally, as the conditions of low-flow coolant with high void fraction in the broken loop continued, causing the degradation of decay heat removal, the peak cladding temperature (PCT) would be expected to exceed the limit criteria for ensuring nuclear fuel integrity. However, despite the same total number of ruptured u-tubes, because of the different connection configuration between the SG and pressurizer, a difference is foud in time between the pressurizer low-level signal and reactor header low-pressure signal, affecting the time to trip the reactor and to reach the PCT limit. The present study is expected to provide the technical basis for the accident management strategy for mSGTR transient conditions of CANDU-6 plants.

Dimensional synthesis of an Inspection Robot for SG tube-sheet

  • Kuan Zhang;Jizhuang Fan;Tian Xu;Yubin Liu;Zhenming Xing;Biying Xu;Jie Zhao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2718-2731
    • /
    • 2024
  • To ensure the operational safety of nuclear power plants, we present a Quadruped Inspection Robot that can be used for many types of steam generators. Since the Inspection Robot relies on the Holding Modules to grip the tube-sheet, it can be regarded as a hybrid robot with variable configurations, switching between 4-RRR-RR, 3-RRR-RR, and two types of 2-RRR-RR, and the variable configurations bring a great challenge to dimensional synthesis. In this paper, the kinematic model of the Inspection Robot in multiple configurations is established, and the analytical solution is given. The workspace mapping is analyzed by the solution-space, and the workspace of multiple configurations is decomposed into the workspace of 2-RRR to reduce the analysis complexity, and the workspace calculation is simplified by using the envelope rings. The optimization problem of the manipulator is transformed into the calculation of the shortest contraction length of the swing leg. The switching performance of the Inspection Robot is evaluated by stride-length, turning-angle, and workspace overlap-ratio. The performance indexes are classified and transformed based on the proportions and variation trends of dimensional parameters to reduce the number of optimization objective functions, and Pareto optimal solutions are obtained using an intelligent optimization algorithm.