• Title/Summary/Keyword: SFRC 보

Search Result 46, Processing Time 0.021 seconds

Shear Capacity Evaluation of High-strength SFRC Beam (고강도 SFRC보의 전단성능 평가)

  • Lee, Hyun-Ho;Keon, Young-Ho;Lee, Hwa-Jin;Chun, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.54-57
    • /
    • 2006
  • The purpose of this study is to estimate the shear strength of high-strength SFRC beam by the comparison of normal-strength SFRC beam. To achieve the goal of this study, 9th specimens were made and tested. From the analyzing test result and previous researches, the shear strengthening effect of steel fiber in high-strength is evaluated as superior than normal-strength concrete. And the proposed shear strength equation of SFRC is underestimated the shear capacity of high-strength SFRC beam. Finally, the shear strengthening effect of steel fiber in high-strength concrete is evaluated about 3.5 times larger than normal-strength concrete.

  • PDF

Dynamic behavior of RC and SFRC Beams (철근콘크리트 및 강섬유철근콘크리트보의 동적거동)

  • 강보순;황성춘;심형섭
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.662-667
    • /
    • 2001
  • In this paper, damping behavior of steel fiber reinforced concrete(SFRC) beams by experimental and numerical method is discussed. Because of its improved ability to dissipate energy, SFRC has a better damping behavior than that of reinforced concrete(RC). Damping behavior is influenced by longitudinal reinforcement ratio, volume and type of steel fiber, strength of concrete and the stress level. Damping in the SFRC beams has been evaluated from dynamic experimental test data at various levels of cracked states in the beams. A FEM program(TICAL) has been developed based on the relationships between curvature and damping. It is observed for SFRC beams with 0.44% of tensile reinforcement steel that approximate 5% to 35% was relatively increased in the damping ratio generally depending on the load level.

  • PDF

Damping of RC and SFRC Beams (철근콘크리트 및 강섬유 철근콘크리트보의 에너지감쇄)

  • Kang Bo-Soon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.2
    • /
    • pp.122-127
    • /
    • 2005
  • In this paper, damping behavior of steel fiber reinforced concrete(SFRC) beams by experimental and numerical method is discussed. Because of its improved ability to dissipate energy, SFRC has a better damping behavior than that of reinforced concrete(RC). Damping behavior is influenced by longitudinal reinforcement ratio, volume md type of steel fiber, strength of concrete and the stress level. Damping in the SFRC beams has been evaluated from dynamic experimental test data at various levels of cracked states in the beams. A FEM program(TICAL) has been developed based on the relationships between curvature and damping. It is observed far SFRC beams with 0.44$\%$ of tensile reinforcement steel that approximate 5$\%$ to 35$\%$ was relatively increased in the damping ratio generally depending on the load level.

Shear Capacity Estimation of SFRC Beam with Stirrups Considering Steel Fiber Strengthening Factor (강섬유 보강계수를 사용한 전단보강 SFRC보의 전단내력 예측)

  • Lee Hyun Ho;Keon Young Ho;Lee Hwa Jin;Hur Moo Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.260-263
    • /
    • 2004
  • The purpose of this study is to estimate the shear strength of SFRC beam that has stirrups. To achieve the goal of this study, two stage investigation, which is material and member level, is studied. From the reviewing of previous researches and analyzing of material and member test results, strengthening parameter of SFRC is defined as steel fiber coefficient. Based on above results, steel fiber strengthening factor is proposed. Therefore, shear strength equation of SFRC, which is considered the steel fiber strengthening factor, is proposed by regression analysis of test results.

  • PDF

A Study on Crack Properties iber Reinforced Concrete Beams (강섬유 보강 철근콘크리트보의 균열특성에 관한 연구)

  • 강보순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.99-104
    • /
    • 2000
  • In this paper, the crack properties fiber reinforced concrete(SFRC) beams by experimental method is discussed. The major role played by the steel fiber occurs in the post-cracking zone, in which the fibers bridge across the cracked matrix. Because of its improved ability to bridging cracks, SFRC has better crack properties than that of reinforced concrete(RC). Crack properties are influenced by longitudinal reinforcement ratio, volume and type of steel fibers, strength of concrete and the stress level. Crack width and number of cracks in SFRC beams have been evaluated from experimental test data at various levels of stress for the tested beams.

  • PDF

System Identification on SFRC Beam (SFRC 보에 대한 System Identification)

  • 이차돈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.3-7
    • /
    • 1991
  • Considering the relatively large amount of stable flexural teat results available for steel fiber reinforced concrete (SFRC) and their dependency on the constitutive behavior of the material, a technique called “System Identification” is used for interpretating the flexural test data in order to obtain basic information on the tensile constitutive behavior of steel fiber reinforced concrete. “System Identification” was successful in obtaining optimum sets of parameters which provide satisfactory matches between the measured and predicted flexural load-deflection relationships.

  • PDF

Numerical Study on Columns Subjected to Blast Load Considering Compressive Behavior of Steel Fiber Reinforced Concrete (강섬유보강콘크리트의 압축거동 특성을 반영한 기둥의 내폭해석 )

  • Jae-Min Kim;Sang-Hoon Lee;Jae Hyun Kim;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.105-112
    • /
    • 2023
  • Steel fiber reinforced concrete (SFRC) exhibits enhanced strength and superior energy dissipation capacity compared to normal concrete, and it can also reduce crack propagation and fragmentation of concrete even when subjected to blast loads. In this study, the parameters defining failure surface and damage function of the K&C concrete nonlinear model were proposed to be applied for the properties of SFRC in LS-DYNA. Single element analysis has been conducted to validate the proposed parameters in the K&C model, which provided very close simulations on the compressive behavior of SFRC. In addition, blast analysis was performed on SFRC columns with different volume fractions of steel fibers, and the blast resistance of SFRC columns was quantitatively analyzed with Korea Occupational Safety & Health Agency (KOSHA) guidelines.

Impact Resistance Evaluation of RC Beams Strengthened with Carbon FRP Sheet and Steel Fiber (CFRP 시트 및 강섬유로 보강된 RC 보의 충격저항 성능 평가)

  • Cho, Seong-Hun;Min, Kyung-Hwan;Kim, Yun-Ji;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.719-725
    • /
    • 2010
  • The analysis and experimental program of reinforced concrete (RC) structures for resistance against such extreme loads as earthquake, blast, and impact have been carried by many researchers and designers. Under the extreme loads, a large amount of energy is suddenly exerted to the structure, hence if the structure fails to absorb the impact energy, catastrophic collapse may occur. To prevent catastrophic collapse of structures, reinforced concrete must have adeguate toughness or it needs to be strengthened. The FRP strengthening method and SFRC are studied widely in resistance of impact load because of their high energy absorption capacity. In this study, drop weight impact tests were implemented to evaluate the impact resistance of SFRC and FRP strengthened RC beam while the total steel fiber volume fractions was fixed at 0.75% carbon FRP flexural strengthened RC beams. Futhermore, to prevent the shear-plug cracks when the impact load strikes the beams, additional FRP shear strengthening method are applied. The experimental, results showed that the FRP strengthened RC SFRC beams has high resistance of shear-plug cracks and crack width and SFRC has high resistance of concrete spalling failure compared to normal RC beams. The FRP flexural and shear strengthening RC beams has weakness in the spalling failure because the impact load concentrated the concrete face which is not strengthened with FRP sheets.

A Study on the Prediction Fatigue Life of Two-Span Beams with Steel Fibrous (강섬유를 혼입한 2경간 연속보의 피로수명 예측에 관한 연구)

  • 곽계환;김원태;이진성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.375-382
    • /
    • 2001
  • This study is attempted to predict experimentally the fatigue crack propagation behavior of two-span beams with steel fibrous for various steel fibrous contents. The static tests and the fatigue tests were performed on a series of SFRC(steel fibrous reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fibrous contents. Through this test, the diagonal cracking loads, ultimate loads, deflections, strains of concrete and steels. Fatigue crack length were measured by the eye-observation. As a result of test, A model for S-N relationship, and propagation life of fatigue crack of SFRC was proposed. The crack growth and failure of SFRC beams were studied.

  • PDF

Deduction On Fatigue Strength of Two Span Continuous Beams with Steel Fibrous (강섬유를 혼입한 2경간 연속보의 피로강도 추정)

  • 곽계환;곽경헌;정태영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.359-364
    • /
    • 2001
  • Recently structural damage has been frequently observed in reinforced concrete bridges due to repeted ioads such as vehicular traffic and due to continual overloads by heavy trucks. Therefore. In this study, the static tests and the fatigue tests were performed on a series of SFRC(steel fibrous reinforced concrete) to investigate the fatigue behavior of SFRC varying with the steel fibrous contents. Through this test, the diagonal cracking loads, ultimate loads, deflections, strains of concrete and steel. On this basis, the crack growth and failure of SFRC beams were studied, and a model for S-N relationship of SFRC was proposed.

  • PDF