• 제목/요약/키워드: SF6 가스차단기

검색결과 35건 처리시간 0.036초

Small-Gap을 이용한 가스차단기에서의 열가스 속도측정에 관한 연구 (A Study of Hot Gas Velocity Measurement in GCB Using Small-Gap)

  • 정진교;김홍규;송기동;박경엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 B
    • /
    • pp.1044-1046
    • /
    • 2005
  • [$SF_6$] 가스차단기를 개발하기 위해서는 차단기가 동작하는 동안에 차단기 내부에서의 유동 파라메터(압력, 밀도, 온도, 속도 등)의 값을 정확하게 분석하는 것이 매우 중요하며, 특히, 아크가 존재할 경우 열가스 이동속도에 대한 분석은 필수적이다. 본 연구에서는 small-gap 측정시스템을 이용하여 시험용차단기가 동작할 때 차단부에서 발생하는 열가스의 이동속도를 측정하기 위한 연구내용을 정리하였다.

  • PDF

간이합성시험설비를 이용한 가스차단기 개발에 관한 연구 (A Study on A Gas Circuit Breaker Development Using Simplified Synthetic Testing Facility)

  • 정진교;김규탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.902-904
    • /
    • 2007
  • A $SF_6$ gas circuit breakers are widely used for short circuit current interruption in EHV or UHV power system. During a $SF_6$ gas circuit breaker development, Simplified synthetic testing facility is used. This paper shows how simplified synthetic testing facility is used for a SF6 gas circuit breaker development.

  • PDF

$SF_6$ 가스차단기에서 가스 속도측정을 위한 Small-Gap 측정시스템에 관한 연구 (Study on The Small-Gap Measuring System for Gas Velocity Measurement of $SF_6$ Gas Circuit Breaker)

  • 김홍규;송기동;이우영;박경엽;정진교
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권3호
    • /
    • pp.139-144
    • /
    • 2005
  • [ $SF_6$ ] gas circuit breakers are widely used short circuit current interruption in EHV or UHV power system. For a $SF_6$ gas circuit breaker development, the $SF_6$ gas velocity measurement is necessary during $SF_6$ circuit breaker's trip operation. Small-gap flashover characteristics are used for this measurement. So, small-gap measuring system which will be used to develope GCB should be developed. This study shows the characteristic analysis and experimental results of small-gap measuring system.

초고압 복합소호 차단부의 열가스 거동 예측 (Prediction of Hot Gas Behavior in High Voltage Self-blast Circuit Breaker)

  • 김진범;여창호;서경보;권기영;이학성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2494-2499
    • /
    • 2007
  • Self-blast circuit breakers utilize the energy dissipated by the arc itself to create the required conditions for arc quenching during the current zero. The high-current simulation provides information about the mixing process of the hot PTFE cloud with $SF_6$ gas which is difficult to access for measurement. But it is also hard to simulate flow phenomenon because the flow in interrupter with high current, $SF_6$-PTFE mixture vapor and complex physical behavior including radiation, calculation of electric field. Using a commercial computational fluid dynamics(CFD) package, the conservation equation for the gas and temperature, velocity and electric fields within breaker can be solved. Results show good agreement between the predicted and measured pressure rise in the thermal chamber.

  • PDF

$SF_6$ 가스의 실제 기체특성을 고려한 파퍼식 가스차단기 내의 냉가스 유동해석 (Analysis of Cold Gas Flow in Puffer Type GCB Considering the Real Gas Property of $SF_6$)

  • 김홍규;정진교;박경엽
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권3호
    • /
    • pp.129-134
    • /
    • 2004
  • To analyze the performance of the gas circuit breaker(GCB), the flow field variables such as temperature, pressure and density should be evaluated accurately In the puffer chamber of puffer type GCB, the pressure rise may Exceed 20 bar and in this range of high pressure, $SF_6$ gas deviates the ideal gas property. Therefore, the real gas property of $SF_6$ should be taken into consideration for the accurate analysis of flow field. This paper presents the analysis technique of cold gas flow in GCB employing the real gas state equation of SF6. The FVFLIC method is Employed to solve the axisymmetric Euler equation. To reduce the computational effort of real gas state equation, the relationship between density and pressure is approximated by the polynomial at the temperature of 300K. The proposed method is applied to the test GCB model and simulation results show good agreement with the experimental ones.

$SF_6$ 차단기의 열가스 수치해석 (Numerical Analysis of Arcs in SF6 Gas Circuit Breaker)

  • 배채윤;김홍규;정현교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.816-818
    • /
    • 2000
  • 본 논문에서는 $SF_6$ 차단기 내의 대전류 아크에 대한 수치적인 해석을 모의하는 도구를 제시한다. 대전류의 차단을 위해서 해석을 통해 열적 파괴를 예측하는 것이 필수적이다. 본 논문에서 사용한 방법은 FVFLIC(finite volume fluid in cells)이며 지배방정식은 압축성 오일러 방정식으로 아크와 유동의 상호 작용을 해석한다. 아크는 기본적으로 에너지 보존식에서 열소스항으로 나타나며 주울열과 복사항으로 표현된다. 주울열은 플라즈마 영역내의 전계해석을 통해 계산되며 복사항은 방출과 흡수항의 합으로 나타내어지고 이것은 국소적인 온도와 압력의 함수이다. 본 논문에서는 수정된 방출과 흡수 모델로 복사 열전달을 계산하였다.

  • PDF

전류영점 영역에서 파퍼식 SF6 가스차단기의 아크 컨덕턴스에 관한 연구 (A Study on Arc Conductance of Puffer Type SF6 GCB at Current Zero Period)

  • 정진교;송기동;이우영;김규탁
    • 전기학회논문지
    • /
    • 제59권2호
    • /
    • pp.328-332
    • /
    • 2010
  • The SLF(Short Line Fault) breaking capability test for high voltage class $SF_6$ GCB(Gas Circuit Breaker) was conducted. Simplified LC resonant circuit test facility was used for SLF breaking test. During test, Test current was measured by Rogwski coil and arc voltage was measured by voltage divider. Arc conductance was calculated by using these test results before 200ns at current zero. Critical arc conductance value at rated voltage 145kV class is about 2.3mS regardless of breaking current magnitude and arc conductance value at rated voltage 170kV class is about 2.6mS.

노즐용삭을 고려한 SF6 가스차단기 노즐의 열적회복특성 해석 (Analysis of Thermal Recovery Characteristics for Nozzle of SF6 GCB Considering Nozzle Ablation)

  • 이병윤;송기동;정진교;박경엽
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권2호
    • /
    • pp.76-82
    • /
    • 2005
  • In this paper, a method for analyzing the thermal recovery characteristics of the nozzle of gas circuit breaker was described. In order to obtain thermal recovery characteristics, the transient simulation of SF6 arc plasma within the nozzle was carried out. In particular, the nozzle ablation was taken into account by simultaneously solving the PTFE concentration equation with the governing equations such as continuity, momentum and energy equation. After that, post arc current calculation was performed with the rate of rise of recovery voltage changed. From the calculated post arc current, it was possible to suggest the thermal recovery characteristics of the nozzle of gas circuit breaker.

PTFE 용삭을 고려한 초고압 복합소호 차단기의 성능 예측 (Prediction of Performance considering Ablated PTFE in High Voltage Self-blast Circuit Breaker)

  • 김진범;권기영;이학성
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.695-698
    • /
    • 2008
  • Self-blast circuit breakers utilize the energy dissipated by the arc itself to create the required conditions for arc quenching during the current zero. During the arcing period, high pressure, temperature and radiation of the arc could burn in pure SF6 gas and PTFE nozzle. Ablated nozzle shape and $SF_6$-PTFE mixture vapor affect the performance of an self-blast circuit breaker. After a number of tests, nozzle in circuit breaker is disassembled, a section of ablated nozzle is investigated precisely. Using computational fluid dynamics, the conservation equation for the gas and temperature, velocity and electric fields within breaker is solved. Before applying a section model, developed program is verified with experimental data. Performance of ablated nozzle shape is compared with original model through analysis program.

  • PDF

초고압 SF6 가스 차단기 투입 시 아크접촉자 내전압 특성 연구 (Analysis of Withstand Voltage between Arc Contacts of High Voltage SF6 Gas Circuit Breaker n Making Operation)

  • 김인길;이주현;정형수;박재윤
    • 전기학회논문지
    • /
    • 제61권4호
    • /
    • pp.601-605
    • /
    • 2012
  • The non-controlled closing of High-voltage SF6 gas circuit breaker can cause transient current and overvoltage in the field. The controlled closing technology is an effective way to reduce transient current and voltage, prevent equipment failures, and improve power quality. For the development of controlled closing, it is obviously necessary to determine the withstand voltage between arc contacts of High-voltage SF6 gas circuit breaker in making operation. This paper focuses on decrease of pressure and density of SF6 gas that can affect withstand voltage between arc contacts in making operation. The dielectric strength between arc contacts could be improved by minimizing the decrement of pressure and density of SF6 gas obtained by simulation and test and moreover the rate of decrease of dielectric strength (RDDS) of arc contacts could be foreseen.