• Title/Summary/Keyword: SERS substrates

Search Result 27, Processing Time 0.026 seconds

Bioinspired CuO Hierarchical Nanostructures for Self-cleaning surfaces and SERS substrates

  • Lee, Jun-Yeong;Han, Jae-Hyeon;Lee, Ji-Hye;Ji, Seung-Muk;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.130-130
    • /
    • 2016
  • Bioinspired hierarchical nanostructures for self-cleaning s-tnwjurface and SERS substrates are investigated. The multi-level hierarchy is combined with CuO nanowire and additional nanoscale structures. CuO nanowire, which has extremely high aspect ratio, serves as a base structure of multi-level hierarchy and additional flower like structures are placed on the CuO nanowires. Since as-fabricated CuO nanostructures are hydrophilic, the surface is coated with perfluorooctyltrichlorosilane in order to change its wetting property to hydrophobic. While those CuO based nanostructures have a sufficient roughness for superhydrophobic characteristics, hierarchical nanoflowers on nanowire structures lead to a self-cleaning surface. Furthermore, flower like nanostructures provide reentrant curvatures, thus enabling oleophobic property. The surfaces has a repellency even for a tiny droplet (10 nL) of low surface tension liquids (~35 mN/m). On the on hands, nanoflowers provide many number of nanoscale gaps. After a thin layer of silver is deposited on the surface of CuO nanostructures, those nanoscale gaps act as hot-spot for surface enhanced Raman scattering (SERS). To analyze SERS enhancement of the surfaces, Raman shift is measured with varying molar density of 4-Mercaptopyridine from mM to pM. From these results, hierarchical CuO nanostructures are suitable for self-maintenance and cost effective SERS sensing applications.

  • PDF

Fabrication of shape-controlled Au nanoparticle arrays for SERS substrates

  • Shin, Seon Mi;Choi, Kyeong Woo;Ye, Seong Ji;Kim, Young Yun;Park, O Ok
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.139-149
    • /
    • 2014
  • Surface enhanced Raman Scattering (SERS) has attracted attention because the technique enables detection of various chemicals, even down to single molecular scale. Among the diverse candidates for SERS substrates, Au nanoparticles are considered promising due to their fine optical properties, chemical stability and ease of surface modification. Therefore, the fabrication and optical characterization of gold particles on solid supports is highly desirable. Such structures have potential as SERS substrates because the localized surface plasmon resonance of gold nanoparticles is very sensitive to combined molecules and environments. In addition, it is well-known that the properties of Au nanoparticles are strongly dependent on their shape. In this work, arrays of shape-controlled Au nanoparticles were fabricated to exploit their enhanced and reproducible optical properties. First, shape-controlled Au nanoparticles were prepared via seed mediated solution-phase synthesis, including spheres, octahedra, and rhombic dodecahedra. Then, these shape-controlled Au nanoparticles were arranged on a PDMS substrate, which was nanopatterned using soft lithography of poly styrene particles. The Au nanoparticles were selectively located in a pattern of hexagonal spheres. In addition, the shape-controlled Au nanoparticles were arranged in various sizes of PDMS nanopatterns, which can be easily controlled by manipulating the size of polystyrene particles. Finally, the optical properties of the fabricated Au nanoparticle arrays were characterized by measuring surface enhanced Raman spectra with 4-nitrobenezenethiol.

Nanofinger Sensors for Health-related Applications

  • Kim, An-Sun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.113.1-113.1
    • /
    • 2014
  • Surface-enhanced Raman scattering (SERS) has long been projected as a powerful analytical technique for chemical and biological sensing applications. Pairing with portable Raman spectrometers makes the technique extremely appealing as real-time sensors for field application. However, the lack of reliable, uniform, low cost and ease-of-use SERS enhancement structures has prevented the wide adoption of this technique for general applications. We have discovered a novel hybrid structure based on the high-density and uniform arrays of gold nanofingers over a large surface area for SERS applications. The nanofingers are flexible and their tips can be brought together to trap molecules to mimic the biological system. We report here a rapid, simple, low-cost, and sensitive method of detecting trace level of food contaminants by using nanofinger chips based on portable SERS technique. We also present here the characterization of surface reaction of target molecules with our gold nanofinger substrates and the effect of nanofinger closing towards SERS performance. This new type of nano-structures can potentially revolutionize the medical and biologic research by providing a novel way to capture, localize, manipulate, and interrogate biological molecules with unprecedented capabilities.

  • PDF

Surface-enhanced Raman scattering (SERS) spectroscopy: a versatile spectroscopic and analytical technique used in nanoscience and nanotechnology

  • Sur, Ujjal Kumar
    • Advances in nano research
    • /
    • v.1 no.2
    • /
    • pp.111-124
    • /
    • 2013
  • Surface-enhanced Raman scattering (SERS) effect deals with the enhancement of the Raman scattering intensity by molecules in the presence of a nanostructured metallic surface. The first observation of surface-enhanced Raman spectra was in 1974, when Fleischmann and his group at the University of Southampton, reported the first high-quality Raman spectra of monolayer-adsorbed pyridine on an electrochemically roughened Ag electrode surface. Over the last thirty years, it has developed into a versatile spectroscopic and analytical technique due to the rapid and explosive progress of nanoscience and nanotechnology. This review article describes the recent development in field of surface-enhanced Raman scattering research, especially fabrication of various SERS active substrates, mechanism of SERS effect and its various applications in both surface sciences and analytical sciences.

Fabrication of Chitosan-gold Nanocomposites Combined with Optical Fiber as SERS Substrates to Detect Dopamine Molecules

  • Lim, Jae-Wook;Kang, Ik-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.25-29
    • /
    • 2014
  • This research was aimed to fabricate an optical fiber-based SERS substrate which can detect dopamine neurotransmitters. Chitosan nanoparticles (NPs) were firstly anchored on the surface of optical fiber, and then gold layer was subsequently deposited on the anchored chitosan NPs via electroless plating method. Finally, chitosan-gold nanocomposites combined with optical fiber reacted with dopamine molecules of 100-1500 mg/day which is a standard daily dose for Parkinson's disease patients. The amplified Raman signal at $1348cm^{-1}$ obtained from optical fiber-based SERS substrate was plotted versus dopamine concentrations (1-10 mM), demonstrating an approximate linearity of Y = 303.03X + 2385.8 ($R^2$ = 0.97) with narrow margin errors. The optical fiber-based Raman system can be potentially applicable to in-vitro (or in-vivo) detection of probe molecules.

Preparation of Electrochemically Stable and SERS Active Silica@Gold Microshell (전기화학 반응용 표면증강라만산란 활성 실리카@금 마이크로쉘의 제작)

  • Piao, Lilin;Lee, Jihye;Chung, Taek Dong
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.46-51
    • /
    • 2013
  • In order to monitor in situ electrochemical reaction we prepared the gold microshells on silica microspheres of $2{\mu}m$ in diameter which were able to not only work as electrodes but also surface enhanced Raman scattering (SERS) active substrates. Previously reported gold microshell using polystyrene as core material have a few serious problems, mostly coming from solubility in organic solvent, nonuniform distribution in size and toxicity of the polystyrene. Here we prepared silica core-gold microshell to obtain a strong SERS active platform benefitting from the physicochemical stability, uniformity and non-toxicity of silica. Varying the concentration of 3-aminopropyl triethoxysilane (APTES), the surfaces of silica beads were modified and the optimal condition was determined to be 1% APTES that made the SERS activity of gold microshell strongest. The gold microshells as made were characterized by homemade Micro-Raman system spectrometer, Field-Emission Scanning Electron Microscope.

Effects of Au Nanoparticle Monolayer on or Under Graphene for Surface Enhanced Raman Scattering

  • Kim, B.Y.;Jung, J.H.;Sohn, I.Y.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.636-636
    • /
    • 2013
  • Since first discovery of strong Raman spectrum of molecules adsorbed on rough noble metal, surface enhanced Raman scattering (SERS) has been widely used for detection of molecules with low concentration. Surface plasmons at noble metal can enhance Raman spectrum and using Au nanostructures as substrates of SERS has advantages due to it has chemical stability and biocompatibility. However, the photoluminescence (PL) background from Au remains a problem because of obtaining molecular vibration information. Recently, graphene, two-dimensional atomic layer of carbon atoms, is also well known as PL quenchers for electronic and vibrational excitation. In this study, we observed SERS of single layer graphene on or under monolayer of Au nanoparticles (NPs). Single layer graphene is grown by chemical vapor deposition and transferred onto or under the monolayer of Au NPs by using PMMA transfer method. Monolayer of Au NPs prepared using Langmuir-Blodgett method on or under graphene surface provides closed and well-packed monolayer of Au NPs. Scanning electron microscopy (SEM) and Raman spectroscopy (WItec, 532 nm) were performed in order to confirm effects of Au NPs on enhanced Raman spectrum. Highly enhanced Raman signal of graphene by Au NPs were observed due to many hot-spots at gap of closed well-packed Au NPs. The results showed that single layer graphene provides larger SERS effects compared to multilayer graphene and the enhancement of the G band was larger than that of 2D band. Moreover, we confirm the appearance of D band in this study that is not clear in normal Raman spectrum. In our study, D band appearance is ascribed to the SERS effect resulted from defects induced graphene on Au NPs. Monolayer film of Au NPs under the graphene provided more highly enhanced graphene Raman signal compared to that on the graphene. The Au NPs-graphene SERS substrate can be possibly applied to biochemical sensing applications requiring highly sensitive and selective assays.

  • PDF

SERS Study of Quinoline Using the Silver Surface (Silver Surface를 이용한 Quinoline의 SERS 연구)

  • Lee, Chul-Jae;Jung, Maeng-Joon;Kim, Dong-Yeub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.3
    • /
    • pp.101-104
    • /
    • 2011
  • In this study, the experiments for surface enhancement of silver surfaces were done, where we checked the characteristics of silver surfaces made by Tollen's method. The surface enhancement of Quinoline was analyzed by three kind of silver mirror substrates. The assignments of the vibrational bands shown in SERS spectra are given based on both literature and the semi-empirical calculations at the PM3 methods. Finally, we deduced that the adsorption orientation of quinoline was little tilted flat to the silver mirror surfaces by using of the surface selection rules.

SERS Study of Bromothymol Blue Using the Silver Mirror substrate (Silver Mirror Substrate를 이용한 Bromothymol Blue의 SERS 연구)

  • Lee, Chul-Jae;Jung, Maeng-Joon;Kim, Dong-Yeub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.15 no.2
    • /
    • pp.43-47
    • /
    • 2012
  • In this study, the experiments for surface enhancement of silver mirror substrate were done, where we checked the characteristics of silver mirror substrate made by Tollen's method. The surface enhancement of Bromothymol blue was analyzed by three kind of silver mirror substrates. The assignments of the vibrational bands shown in SERS spectra are given based on both literature and the semi-empirical calculations at the PM3 methods. Finally, we deduced that the adsorption orientation of bromothymol blue was little tilted flat to the silver mirror surfaces by using of the surface selection rules.