• Title/Summary/Keyword: SERS substrates

Search Result 27, Processing Time 0.021 seconds

Fabrication of Flexible Surface-enhanced Raman-Active Nanostructured Substrates Using Soft-Lithography

  • Park, Ji-Yun;Jang, Seok-Jin;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.411-411
    • /
    • 2012
  • Over the recent years, surface enhanced Raman spectroscopy (SERS) has dramatically grown as a label-free detecting technique with the high level of selectivity and sensitivity. Conventional SERS-active nanostructured layers have been deposited or patterned on rigid substrates such as silicon wafers and glass slides. Such devices fabricated on a flexible platform may offer additional functionalities and potential applications. For example, flexible SERS-active substrates can be integrated into microfluidic diagnostic devices with round-shaped micro-channel, which has large surface area compared to the area of flat SERS-active substrates so that we may anticipate high sensitivity in a conformable device form. We demonstrate fabrication of flexible SERS-active nanostructured substrates based on soft-lithography for simple, low-cost processing. The SERS-active nanostructured substrates are fabricated using conventional Si fabrication process and inkjet printing methods. A Si mold is patterned by photolithography with an average height of 700 nm and an average pitch of 200 nm. Polydimethylsiloxane (PDMS), a mixture of Sylgard 184 elastomer and curing agnet (wt/wt = 10:1), is poured onto the mold that is coated with trichlorosilane for separating the PDMS easily from the mold. Then, the nano-pattern is transferred to the thin PDMS substrates. The soft lithographic methods enable the SERS-active nanostructured substrates to be repeatedly replicated. Silver layer is physically deposited on the PDMS. Then, gold nanoparticle (AuNP) inks are applied on the nanostructured PDMS using inkjet printer (Dimatix DMP 2831) to deposit AuNPs on the substrates. The characteristics of SERS-active substrates are measured; topology is provided by atomic force microscope (AFM, Park Systems XE-100) and Raman spectra are collected by Raman spectroscopy (Horiba LabRAM ARAMIS Spectrometer). We anticipate that the results may open up various possibilities of applying flexible platform to highly sensitive Raman detection.

  • PDF

Coating gold nanoparticles to a glass substrate by spin-coat method as a surface-enhanced raman spectroscopy (SERS) plasmonic sensor to detect molecular vibrations of bisphenol-a (BPA)

  • Eskandari, Vahid;Hadi, Amin;Sahbafar, Hossein
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.417-426
    • /
    • 2022
  • Bisphenol A (BPA) is one of the chemicals used in monomer epoxy resins and polycarbonate plastics. The surface-enhanced Raman spectroscopy (SERS) method is precise for identifying biological materials and chemicals at considerably low concentrations. In the present article, the substrates coated with gold nanoparticles have been studied to identify BPA and control the diseases caused by this chemical. Gold nanoparticles were made by a simple chemical method and by applying gold salt and trisodium citrate dihydrate reductant and were coated on glass substrates by a spin-coat approach. Finally, using these SERS substrates as plasmonic sensors and Raman spectroscopy, the Raman signal enhancement of molecular vibrations of BPA was investigated. Then, the molecular vibrations of BPA in some consumer goods were identified by applying SERS substrates as plasmonic sensors and Raman spectroscopy. The fabricated gold nanoparticles are spherical and quasi-spherical nanoparticles that confirm the formation of gold nanoparticles by observing the plasmon resonance peak at 517 nm. Active SERS substrates have been coated with nanoparticles, which improve the Raman signal. The enhancement of the Raman signal is due to the resonance of the surface plasmons of the nanoparticles. Active SERS substrates, gold nanoparticles deposited on a glass substrate, were fabricated for the detection of BPA; a detection limit of 10-9 M and a relative standard deviation (RSD) equal to 4.17% were obtained for ten repeated measurements in the concentration of 10-9 M. Hence, the Raman results indicate that the active SERS substrates, gold nanoparticles for the detection of BPA along with the developed methods, show promising results for SERS-based studies and can lead to the development of microsensors. In Raman spectroscopy, SERS active substrate coated with gold nanoparticles are of interest, which is larger than gold particles due to the resonance of the surface plasmons of gold nanoparticles and the scattering of light from gold particles since the Raman signal amplifies the molecular vibrations of BPA. By decreasing the concentration of BPA deposited on the active SERS substrates, the Raman signal is also weakened due to the reduction of molecular vibrations. By increasing the surface roughness of the active SERS substrates, the Raman signal can be enhanced due to increased light scattering from rough centers, which are the same as the larger particles created throughout the deposition by the spin-coat method, and as a result, they enhance the signal by increasing the scattering of light. Then, the molecular vibrations of BPA were identified in some consumer goods by SERS substrates as plasmonic sensors and Raman spectroscopy.

SERS Study of Fluorescein Using the Silver Sol and Silver Mirror Substrates (Silver Sol과 Silver Mirror Substrate를 이용한 Fluorescein의 SERS 연구)

  • Lee, Chul-Jae;Choi, Hyun-Kuk;Jung, Maeng-Joon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.27-32
    • /
    • 2007
  • It has been recently reported that the SERS (Surface Enhanced Raman Scattering) effect of the silver mirror substrate made by Tollen's method is much superior to that of other substrates. In this study, the experiments for comparison of surface enhancement of silver sol and silver mirror substrates were done, where we checked the characteristics of silver mirror substrate made by Tollen's method. The surface enhancement of fluorescein was analyzed by silver sol and silver mirror substrates. We observed the SERS spectra of fluorescein. The assignments of the vibrational bands shown in SERS spectra are given based on both literature and the semi-empirical calculations at the PM3 methods. The surface enhancement properties for fluorescein showed that the silver mirror was more superior to sliver sol substrates. Spectra of fluorescein revealed that fluorescein was adsorbed on silver surfaces by a common oxygen atom. According to the 'surface selection rule', the vibrations in the band intensities reflect the adsorption orientation of the molecule on to the surface of SERS substrates. Therefore, we deduced that the adsorption orientation of fluorescein was little tilted perpendicular to the silver surfaces by using of the surface selection rules.

  • PDF

Copper micro/nanostructures as effective SERS active substrates for pathogen detection

  • Ankamwar, Balaprasad;Sur, Ujjal Kumar
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.113-122
    • /
    • 2020
  • Surface-Enhanced Raman Scattering (SERS) spectroscopy is a multifaceted surface sensitive methodology which exploits spectroscopy-based analysis for various applications. This technique is based on the massive amplification of Raman signals which were feeble previously in order to use them for appropriate identification at qualitative and quantitative in chemical as well as biological systems. This novel powerful technique can be utilized to identify pathogens such as bacteria and viruses. As far as SERS is concerned, one of the most studied problems has been functionalization of SERS active substrate. Metal colloids and nanostructures or microstructures synthesized using noble metals such as Au, Ag and Cu are considered to be SERS active. Silver and gold are extensively used as SERS active substrates due to chemical inertness and stability in air compare to copper. However, use of Cu as a suitable alternative has been taken into account as it is cheap. Herein, we have synthesized air-stable copper microstructures/nanostructures by chemical, electrochemical and microwave-assisted methods. In this paper, we have also discussed the use of as synthesized copper micro/nanostructures as inexpensive yet effective SERS active substrates for the fast identification of micro-organisms like Staphylococcus aureus and Escherichia coli.

SERS Study of Phenol Red Using the Silver Mirror Substrates (Silver Mirror Substrate를 이용한 Phenol Red의 SERS 연구)

  • Lee, Chul-Jae;Kang, Jae-Soo;Han, In-Soo;Lee, Sang-Mu
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • It was recently reported that the SERS effect of the silver mirror substrate made by Tollen's method is much superior to that of other substrates. In this study, the experiments for comparison were done, where we checked the characteristics of silver mirror substrate made by different reductants, time interval and thermal treatments. We also surveyed correlations in substrates changes, the influence of SERS enhancement, and adsorbed orientation of phenol red.

SERS Study of Eriochrome Black T Using the Silver Mirror Substrates (Silver Mirror Substrate를 이용한 Eriochrome Black T의 SERS 연구)

  • Lee, Chul-Jae;Jung, Maeng-Joon;Kim, Dong-Yeub
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.14 no.1
    • /
    • pp.23-27
    • /
    • 2011
  • In this study, the experiments for surface enhancement of silver mirror substrates were done, where we checked the characteristics of silver mirror substrate made by Tollen's method. The surface enhancement of Eriochrome Black T(EBT) was analyzed by silver mirror substrates. We observed the SERS spectra of EBT. The assignments of the vibrational bands shown in SERS spectra are given based on both literature and the semi-empirical calculations at the PM3 methods. Finally, we deduced that the adsorption orientation of EBT was little tilted perpendicular to the silver mirror surfaces by using of the surface selection rules.

Electroless Deposition and Surface-Enhanced Raman Scattering Application of Palladium Thin Films on Glass Substrates

  • Shin, Kuan Soo;Cho, Young Kwan;Kim, Kyung Lock;Kim, Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.743-748
    • /
    • 2014
  • In this work, we describe a very simple electroless deposition method to prepare moderate-SERS-active nanostructured Pd films deposited on the glass substrates. To the best of our knowledge, this is the first report on the one-pot electroless method to deposit Pd nanostructures on the glass substrates. This method only requires the incubation of negatively charged glass substrates in ethanol-water mixture solutions of $Pd(NO_3)_2$ and butylamine at elevated temperatures. Pd films are then formed exclusively and evenly on glass substrates. Due to the aggregated structures of Pd, the SERS spectra of benzenethiol and organic isonitrile could be clearly identified using the Pd-coated glass as a SERS substrate. This one-step fabrication method of Pd thin film on glass is cost-effective and suitable for the mass production.

New Routes to the Preparation of Silver-Doped Sol-Gel Films for a SERS Study

  • Kang, Jae-Soo;Lee, Chul-Jae;Kim, Mak-Soon;Lee, Mu-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.11
    • /
    • pp.1599-1604
    • /
    • 2003
  • New methods were developed to prepare silver-doped sol-gel films for surface-enhanced Raman spectroscopy (SERS) applications. First, silver ions were doped into a sol-gel matrix. The doped silver ions were reduced into corresponding silver metal particles by two reductive procedures; chemical reduction and thermal reduction. The SERS spectra of benzoic acid were used to demonstrate the SERS effect of the new substrates. The adsorption strength of benzoic acid adsorbed on differently reduced substrates was discussed. The possible adsorption form and the orientation of adsorbate were also discussed.

Synthesis of Size-Controlled Urchin Ag Nanoparticles and Surfcace Enhanced Raman Spectroscopy (SERS) (크기가 조절된 성게 모양의 실버나노 입자의 합성과 표면 라만 증강)

  • Lee, Young Wook;Shin, Tae Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.454-457
    • /
    • 2019
  • Controlling the shape of Ag nanoparticles (NPs) is very difficult. In the present work, urchin Ag NPs with different sizes and pod length control have been synthesized successfully in high yield by the concentration of a reducing agent. Unique Ag NPs were observed by TEM and SEM. These nanocrystals exhibit tunable surface plasmon resonance properties from the visible to near-infrared regions. They were applied to surface-enhanced Raman scattering (SERS) substrates using rhodamine 6G (R6G), benzenethiol (BT), and 4-amino benznethiol (4-ABT) molecules. The enhanced local field effect due to the sharp pod length, size, and surface plasmon of the urchin Ag NPs resulted in enhanced SERS properties and can serve as high-sensitivity substrates for SERS measurements.

Effect of Gold Substrates on the Raman Spectra of Graphene

  • Kim, Na-Young;Oh, Min-Kyung;Park, Sung-Ho;Kim, Seong-Kyu;Hong, Byung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.999-1003
    • /
    • 2010
  • Raman spectra of a single layer graphene sheet placed in different gold substrates were obtained and are discussed in the context of surface enhanced Raman scattering (SERS). The gold substrates were composed of a combination of a thermally deposited gold film and a close-packed gold nanosphere layer. The SERS effects were negligible when the excitation wavelength was 514 nm, while the Raman signals were enhanced 3-to 50-fold when the excitation wavelength was 633 nm. The large SERS enhancement accompanied a spectral distortion with appearance of several unidentifiable peaks, as well as enhancement of a broadened D peak. These phenomena are interpreted as the local field enhancement in the nanostructure of the gold substrates. The difference in the enhancement factors among the various gold substrates is explained with a model in which the spatial distribution and polarization of the local field and the orientation of the inserted graphene sheet are considered important.