DOI QR코드

DOI QR Code

Copper micro/nanostructures as effective SERS active substrates for pathogen detection

  • Ankamwar, Balaprasad (Bio-Inspired Materials Research Laboratory, Department of Chemistry, S.P. Pune University) ;
  • Sur, Ujjal Kumar (Bio-Inspired Materials Research Laboratory, Department of Chemistry, S.P. Pune University)
  • Received : 2019.09.09
  • Accepted : 2020.08.06
  • Published : 2020.08.25

Abstract

Surface-Enhanced Raman Scattering (SERS) spectroscopy is a multifaceted surface sensitive methodology which exploits spectroscopy-based analysis for various applications. This technique is based on the massive amplification of Raman signals which were feeble previously in order to use them for appropriate identification at qualitative and quantitative in chemical as well as biological systems. This novel powerful technique can be utilized to identify pathogens such as bacteria and viruses. As far as SERS is concerned, one of the most studied problems has been functionalization of SERS active substrate. Metal colloids and nanostructures or microstructures synthesized using noble metals such as Au, Ag and Cu are considered to be SERS active. Silver and gold are extensively used as SERS active substrates due to chemical inertness and stability in air compare to copper. However, use of Cu as a suitable alternative has been taken into account as it is cheap. Herein, we have synthesized air-stable copper microstructures/nanostructures by chemical, electrochemical and microwave-assisted methods. In this paper, we have also discussed the use of as synthesized copper micro/nanostructures as inexpensive yet effective SERS active substrates for the fast identification of micro-organisms like Staphylococcus aureus and Escherichia coli.

Keywords

Acknowledgement

BA would like to thank the Board of College and University Development (BCUD) (BCUD, Finance/2016-17/1596, dated 08/11/2016), University of Pune for provision of financial support BA also extends special gratitude to UGC-DAE CSR (University Grants Commission-Department of Atomic Energy Consortium for Scientific Research), Bhabha Atomic Research Centre, Mumbai, India (Grant No. UDCSR/MUM/AO/CRS-M-248/2017/1169, Dt. March 14, 2017) for Major Research Project. UKS would like to thank Indian National Science Academy (INSA), New Delhi, India for INSA Visiting Scientist Fellowship (SP/VF-9/2014-15/273/01 April, 2014) under the supervision of BA at Bio-Inspired Materials Research Laboratory, Department of Chemistry, Savitribai Phule Pune University, Ganeshkhind, Pune-411007, India. UKS would like to acknowledge financial support from the projects funded by the DHESTBT, Government of West Bengal (memo no. 161(sanc)/ST/P/S&T/9G-50/2017 dated 8/2/2018).

References

  1. Ankamwar, B., Sur, U.K. and Das, P. (2016), "SERS study of bacteria using biosynthesized silver nanoparticles as the SERS substrate", Anal. Methods, 8(11), 2335-2340. https://doi.org/10.1039/C5AY03014E.
  2. Betz, J.F., Wei, W.Y., Cheng, Y., White, I.M. and Rubloff, G.W. (2014), "Simple SERS substrates: powerful, portable, and full of potential", Phys. Chem. Chem. Phys., 16(6), 2224-2239. https://doi.org/10.1039/C3CP53560F.
  3. Borgohain, K., Murase, N. and Mahamuni, S. (2002), "Synthesis and properties of $Cu_2O$ quantum particles", J. Appl. Phys., 92(3), 1292-1297. https://doi.org/10.1063/1.1491020.
  4. Cejkova, J., Prokopec, V., Brazdova, S., Kokaislova, A., Matejka, P. and Stepanek, F. (2009), "Characterization of copper SERS-active substrates prepared by electro chemical deposition", Appl. Surf. Sci., 255(18), 7864-7870. https://doi.org/10.1016/j.apsusc.2009.04.152.
  5. Dendisova-Vyskovska, M., Prokopec, V., Clupek, M. and Matejka, P. (2012), "Comparison of SERS effectiveness of copper substrates prepared by different methods: what are the values of enhancement factors?", J. Raman Spectrosc., 43(2), 181-186. https://doi.org/10.1002/jrs.3022.
  6. Efrima, S. and Bronk, B.V. (1998), "Silver colloids impregnating or coating bacteria", J. Phys. Chem. B., 102(31), 5947-5950. https://doi.org/10.1021/jp9813903.
  7. Efrima, S. and Zeiri, L. (2009), "Understand ing SERS of bacteria", J. Raman Spectrosc., 40(3), 277-288. https://doi.org/10.1002/jrs.2121.
  8. Fleischmann, M., Hendra, P.J. and McQuillan, A. (1974), "Raman spectra of pyridine adsorbed at a silver electrode", J. Chem. Phys. Lett., 26(2), 163-166. https://doi.org/10.1016/0009-2614(74)85388-1.
  9. Freeman, R.G., Grabar, K.C., Allison, K.J., Bright, R.M., Davis, J.A., Guthrie, A.P., Hommer, M.B., Jackson, M.A., Smith, P.C., Walter, D.G. and Natan, M.J. (1995), "Self-assembled metal colloid monolayers: an approach to SERS substrates", Science, 267(5204), 1629-1632. https://doi.org/10.1126/science.267.5204.1629.
  10. Gomez, M. and Lazzari, M. (2014), "Reliable and cheap SERS active substrates", Mater. Today, 7(17), 358-359. https://doi.org/10.1016/j.mattod.2014.08.001.
  11. Jarvis. R.M. and Goodacre, R. (2004), "Discrimination of bacteria using surface-enhanced Raman spectroscopy", Anal. Chem., 76(1), 40-47. https://doi.org/10.1021/ac034689c.
  12. Jeanmaire, D.L. and Van Duyne, R.P. (1977), "Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode", J. Electroanal. Chem., 84(1), 1-20. https://doi.org/10.1016/S0022-0728(77)80224-6.
  13. Jiang, Y.X., Li, J.F., Wu, D.Y., Yang, Z.L., Ren, B., Hu, J.W., Chow, Y.L. and Tian, Z.Q. (2007), "Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy", Chem. Comm., 44, 4608-4610. https://doi.org/10.1039/B711218A.
  14. Kahraman, M., Yazici, M.M., Sahin, F., Bayrak, O.F. and Culha, M. (2007), "Reproducible surface-enhanced Raman scattering spectra of bacter ia on aggregated silver nanoparticles", Appl. Spectrosc., 61(5), 479-485. https://doi.org/10.1366/000370207780807731.
  15. Khan, A. and Rashid, A. (2016), "A chemical reduction approach to the synthesis of copper nanoparticles", Int. Nano Lett., 6, 21-26. https://doi.org/10.1007/s40089-015-0163-6.
  16. Kim, Y.H., Kang, Y.S., Lee, W.J., Jo, B.G. and Jeong, J.H. (2006), "Synthesis of Cu nanoparticles prepared by using thermal decomposition of Cu-oleate complex", Mol. Cryst. Liq. Cryst., 445(1), 231-238. https://doi.org/10.1080/15421400500366522.
  17. Klung, H.P. and Alexander, L.E. (1974), X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, John Wiley & Sons, New York, USA.
  18. Kreibig, U. and Vollmer, M. (1995), Optical Properties of Metal Clusters, Springer, Berlin, Germany.
  19. Li, J.F., Huang, Y.F., Ding, Y., Yang, Z.L., Li, S.B., Zhou, X.S., Fan, F.R., Zhang, W., Zhou, Z.Y., Wu, D.Y., Ren, B., Wang, Z.L. and Tian, Z.Q. (2010), "Shell-isolated nanoparticle-enhanced Raman spectroscopy", Nature, 464(7287), 392-395. https://doi.org/10.1038/nature08907.
  20. Liu, P., Wang, H., Li, X., Ruib, M. and Zeng, H. (2015), "Localized surface plasmon resonance of Cu nanoparticles by laser ablation in liquid media", RSC Adv., 5(97), 79738-79745. https://doi.org/10.1039/C5RA14933A.
  21. Liu, T.T., Lin, Y.H., Hung, C.S., Liu, T.J., Chen, Y., Huang, Y.C., Tsai, T.H., Wang, H.H., Wang, D.W., Wang, J.K., Wang, Y.L. and Lin, C.H. (2009), "A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall", PloS One, 4(5), e5470. https://doi.org/10.1371/journal.pone.0005470.
  22. Mahajan, C.M. and Takwale, M.G. (2014), "In termittent spray pyrolytic growth of nanocrystalline and highly oriented transparent conducting ZnO thin films: effect of solution spray rate", J. Alloys Compd., 584, 128-135. https://doi.org/10.1016/j.jallcom.2013.08.136.
  23. Moskovits, M. (2005), "Surface-enhanced Raman spectroscopy: a brief retrospective", J. Raman Spectrosc., 36(6-7), 485-496. https://doi.org/10.1002/jrs.1362.
  24. Mott, D., Galkowski, J., Wang, L., Luo, J. and Zhong, C.J. (2007), "Synthesis of size-controlled and shaped copper nanoparticles", Langmuir, 23(10), 5740-5745. https://doi.org/10.1021/la0635092.
  25. Muniz-Miranda, M., Gellini, C. and Giorgetti, E. (2011), "Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation", J. Phys. Chem. C., 115(12), 5021-5027. https://doi.org/10.1021/jp1086027.
  26. Nie, S. and Emory, S.R. (1997), "Probing single molecules and single nanoparticles by surface-enhanced Raman scattering", Science, 275(5303), 1102-1106. https://doi.org/10.1126/science.275.5303.1102.
  27. Panigrahi, S., Kundu, S., Ghosh, S.K., Nath, S., Praharaj, S., Basu, S. and Pal, T. (2006), "Selective one-pot synthesis of copper nanorods under surfactantless condition", Polyhedron, 25(5), 1263-1269. https://doi.org/10.1016/j.poly.2005.09.006.
  28. Pettinger, B., Ren, B., Picardi, G., Schuster, R. and Ertl, G. (2004), "Nanoscale prob ing of adsorbed species by tip-enhanced Raman spectroscopy", Phys. Rev. Lett., 92(9), 096101. https://doi.org/10.1103/PhysRevLett.92.096101.
  29. Salzemann, C., Lisiecki, I., Urban, J. and Pileni, M.P. (2004), "Anisotropic copper nanocrystals synthesized in a supersaturated medium: nano crystal growth", Langmuir, 20(26), 11772-11777. https://doi.org/10.1021/la0492862.
  30. Sengupta, A., Laucks, M.L. and Dav is, E.J. (2005), "Surface-enhanced Raman spectroscopy of bacteria and pollen", Appl. Spectrosc., 59(8), 1016-1023. https://doi.org/10.1366/0003702054615124.
  31. Sharma, B., Cardinal, M.F., Kleinman, S.L., Greeneltch, N.G., Frontiera, R.R., Blaber, M.G., Schatz, G.C. and Van Duyne, R.P. (2013), "High-performance SERS substrates: advances and challenges", MRS Bull., 38(8), 615-624. https://doi.org/10.1557/mrs.2013.161.
  32. Silvestre, J.P., Poulin, S., Kabashin, A.V., Sacher, E., Meunier, M. and Luong, J.H. (2004), "Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media", J. Phys. Chem. B., 108(43), 16864-16869. https://doi.org/10.1021/jp047134+.
  33. Sur, U.K. (2010), "Surface-enhanced Raman spectroscopy", Resonance, 15(2), 154-164. https://doi.org/10.1007/s12045-010-0016-6.
  34. Sur, U.K. and Chowdhury, J. (2013), "Surface-enhanced Raman scattering: overview of a versatile technique used in electrochemistry and nanoscience", Curr. Sci., 105, 923-939.
  35. Sur, U.K., Ankamwar, B., Karmakar, S., Halder, A. and Das, P. (2018), "Green synthesis of silver nanoparticles using the plant extract of shikakai and reetha", Mater. Today, 5, 2321-2329. https://doi.org/10.1016/j.matpr.2017.09.236.
  36. Tian, Z.Q. and Ren, B. (2003), Encyclopedia of Electrochemistry, Wiley-VCH, Weinheim, Germany.
  37. Tian, Z.Q. and Ren, B. (2004), "Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy" Annu. Rev. Phys. Chem., 55, 197-229. https://doi.org/10.1146/annurev.physchem.54.011002.103833.
  38. Wang, H.H., Liu, C.Y., Wu, S.B., Liu, N.W., Peng, C.Y., Chan, T.H., Hsu, C.F., Wang, J.K. and Wang, Y. L. (2006), "Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps", Adv. Mater., 18(4), 491-495. https://doi.org/10.1002/adma.200501875.
  39. Willets, K.A. and Van Duyne, R.P. (2007), "Localized surface plasmon resonance spectroscopy and sensing", Annu. Rev. Phys. Chem., 58, 267-297. https://doi.org/10.1146/annurev.physchem.58.032806.104607.
  40. Yin, M., Wu, C.K., Lou, Y., Burda, C., Koberstein, J.T., Zhu, Y. and O'Brien, S. (2005), "Copper oxide nanocrystals", J. Am. Chem. Soc., 127(26), 9506-9511. https://doi.org/10.1021/ja050006u.