• Title/Summary/Keyword: SEM and EDS

Search Result 1,269, Processing Time 0.031 seconds

Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy Studies on Processed Tooth Graft Material by Vacuum-ultrasonic Acceleration

  • Lee, Eun-Young;Kim, Eun-Suk;Kim, Kyung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.3
    • /
    • pp.103-110
    • /
    • 2014
  • Purpose: The current gold standard for clinical jawbone formation involves autogenous bone as a graft material. In addition, demineralized dentin can be an effective graft material. Although demineralized dentin readily induces heterotopic bone formation, conventional decalcification takes three to five days, so, immediate bone grafting after extraction is impossible. This study evaluated the effect of vacuum ultrasonic power on the demineralization and processing of autogenous tooth material and documented the clinical results of rapidly processed autogenous demineralized dentin (ADD) in an alveolar defects patient. Methods: The method involves the demineralization of extracted teeth with detached soft tissues and pulp in 0.6 N HCl for 90 minutes using a heat controlled vacuum-ultrasonic accelerator. The characteristics of processed teeth were evaluated by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Bone grafting using ADD was performed for narrow ridges augmentation in the mandibular area. Results: The new processing method was completed within two hours regardless of form (powder or block). EDS and SEM uniformly demineralized autotooth biomaterial. After six months, bone remodeling was observed in augmented sites and histological examination showed that ADD particles were well united with new bone. No unusual complications were encountered. Conclusion: This study demonstrates the possibility of preparing autogenous tooth graft materials within two hours, allowing immediate one-day grafting after extraction.

Analysis and Investigation of Archaeological Chemistry on the Class Beads of Dujeong-dong site of Cheonan, Korea (천안 두정동 출토 유리구슬의 고고화학적 분석 고찰)

  • Song, Yu-Na;Kim, Gyu-Ho
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.5-18
    • /
    • 2006
  • Dujeong-dong site of Cheonan is known as the site of Baekje period in the first half of the fourth century. This study investigated the visible properties and the chemical composition of the 18 pieces of the glass found in the site, and considered scientific properties and periodic interrelationship of the glass on the basis of the analysis result. The observation of the visible properties and microstructure of ancient glass was performed with both an electron microscope and an optical microscope, and the chemical composition was conducted by way of both quantitative and qualitative analysis using Scanning Electron Microscope(SEM) with Energy Dispersive Spectrometer(EDS). In the analysis result, various chemical composition systems are identified in the glass beads of Dujeong-dong site, such as lead-barium, soda and potash glass, and also different shapes were found such as gold foil glass beads, tubular beads, and round beads. It is estimated that the classification of glass by means of its chemical composition was also closely related to the color of glass.

  • PDF

Effects of GPS heat-treatment on microstructure of as-cast Co-Cr alloy (Co-Cr 주조합금의 미세구조에 미치는 GPS 열처리 효과)

  • Ryu, Jeong Ho;Lee, Ho Jun;Cho, Hyun Su;Paeng, Jong Min;Park, Jong Bum;Lee, Jung-Il
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.263-267
    • /
    • 2017
  • The Co-Cr as-cast alloys are widely used in the manufacturing of orthopedic implants made with investment casting techniques because of its high strength, good corrosion resistance and excellent biocompatibility properties. Carbide precipitation at grain boundaries and interdendritic regions is the major strenthening mechanism in the as-cast condition. In this study, effects of GPS (Gas Pressured Sintering) heat-treatment on the microstructure and crystallinity of the as-cast Co-Cr alloy prepared by investment casting were investigated. It was confirmed that the content of metal carbide ($Cr_{23}C_6$) was increased in the grain boundary by using optical microscopy (OM), field-emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS).

Synthesis and Characterization of $In_2O_3$ Nanowires in a Wet Oxidizing Environment (습식 산화 분위기에서의 산화 인듐 나노선의 합성 및 구조적 특성)

  • Jeong, Jong-Seok;Kim, Young-Heon;Lee, Jeong-Yong
    • Applied Microscopy
    • /
    • v.33 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • Indium oxide ($In_2O_3$) nanowires were successfully synthesized by a simple reaction in a wet oxidizing environment at low temperature without metal catalyst. The nanowires were characterized by an x-ray diffraction (XRD), a scanning electron microscopy (SEM) equipped with an energy dispersive spectrometry (EDS), and a transmission electron microscopy (TEM). It was shown that the $In_2O_3$ nanowires were two types of morphology, uniform nanowires and nanowires containing $In_2O_3$ nanoparticles in its stem. It was found that lengths of the nanowires were ranges of several micrometers and their diameters were around $10{\sim}250$ nm. The growth direction of the nanowires was investigated and their growth mechanism is also discussed.

Particle Shapes and Optical Property of Synthesized ZnO with Amine Additives (아민첨가제를 사용하여 합성된 ZnO의 입자형상 및 광학적 특성)

  • Hyeon, Hye-Hyeon;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • Zinc oxide of hexagonal wurzite, is known as n-type semiconductor. It has a wide band gap energy of 3.37 eV and large exciton binding energy of 60 meV. It can be widely applied to gas sensors, laser diodes, dye-sensitized solar cells and degradation of dye waste. The use of microwave hydrothermal synthesis brings a rapid reaction rate, high yield, and energy saving. Amine additives control the different particle shapes because of the chelate effect and formation of hydroxide ion. In this study, zinc nitrate hexahydrate was used as zinc precursor. In addition, ethanolamine, ethylenediamine, diethylenetriamine, and hexamethylenetetramine are used as shape control agent. The pH value was controlled as 11 by NaOH. The shapes of zinc oxide are star-like, rod, flower-like, and circular cone. In order to analyze physical, chemical, and optical properties of ZnO with diverse amine additives, we used XRD, SEM, EDS, FT-IR, UV-Vis spectroscopy, and PL spectroscopy.

Precipitaion of Acid Mine Drainage Using Coagulants and Flocculants (유기 및 무기응집제를 이용한 산성광산배수 침전 연구)

  • Oh, Taek-Geun;Hwang, Won-Jeong;Lee, Jong-Un;Cha, Jongmun
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.3-10
    • /
    • 2016
  • The passive treatment was required a large area for the treatment of acid mine drainage (AMD), and pollutants were discharged with mine drainage by the increased flow rate in summer. This study was performed to improve the turbidity and to precipitate the pollutants quickly using coagulants and flocculants in AMD of abandoned mine sites that were difficult to build the passive treatment system. The coagulant PAC (Poly aluminium chloride) and flocculant PAM (Polyacrylamide) were selected to improve turbidity in W mine waters. We also tested the particle size analysis, ICP-OES and/or SEM-EDS for water and sludge samples.

The Oxidation of Chalcopyrite and Geochemical Behavior of Heavy Metals in the Manjang Cu Mine (만장광산에서 산출되는 황동석의 산화과정과 중금속 거동 특성)

  • 이평구;이인경;최상훈;김지수
    • Economic and Environmental Geology
    • /
    • v.37 no.3
    • /
    • pp.291-301
    • /
    • 2004
  • In order to charaterize weathering of chalcopyrite and behavior of dissolved metal ions in waste rocks from Manjang Cu mine, mineralogical studies such as refractive microscope, XRD and SEM/EDS analyses carried out. The weathering was mainly occurred in fractures and edge of the chalcopyrite within the mine waste rocks. The weathering process can be seen to reflect four stages based on the weathering degree of chalcopyrite. The main secondary minerals are goethite, covellite, azurite, malachite and brochantite. Dissolved Cu and As were mainly adsorbed Fe-hydroxide. Poorly crystalline Fe-oxide contains relatively high As contents. In oxdizing condition, the weathering of chalcopyrite mainly occurs along the fracture, while the replacement of chalcopyrite observed mainly in the grain and produced covellite and brochantite. The dissolved metals (Cu, Fe, As) in waste rocks from the abandoned Manjang mine area could attenuate naturally by precipitation, adsorption and replacement reaction.

From Paris and Shanghai to Singapore: A Multidisciplinary Study in Evaluating the Provenance and Dating of Two of Liu Kang's Paintings

  • Lizun, Damian
    • Journal of Conservation Science
    • /
    • v.37 no.4
    • /
    • pp.322-339
    • /
    • 2021
  • This paper focuses on the dating and provenance of two paintings, Climbing the hill and View from St. John's Fort by the prominent Singaporean artist Liu Kang (1911-2004). Climbing the hill, from the National Gallery Singapore collection, was believed to have been created in 1937, based on the date painted by the artist. However, a non-invasive examination unveiled evidence of an underlying paint scheme and a mysterious date, 1948 or 1949. These findings prompted a comprehensive technical study of the artwork in conjunction with comparative analyses of View from St. John's Fort (1948), from the Liu family collection. The latter artwork is considered to be depicting the same subject matter. The investigation was carried out with UVF, NIR, IRFC, XRR, digital microscopy, PLM and SEM-EDS to elucidate the materials and technique of both artworks and find characteristic patterns that could indicate a relationship between both paintings and assist in correctly dating Climbing the hill. The technical analyses were supplemented with the historical information derived from the Liu family archives. The results showed that Climbing the hill was created in 1948 or 1949 on top of an earlier composition painted in Shanghai between 1933 and 1937. As for the companion View from St. John's Fort from 1948, the artist reused an earlier painting created in France in 1931. The analytical methods suggested that Liu Kang used almost identical pigment mixtures for creating new artworks. However, their painting technique demonstrates some differences. Overall, this study contributes to the understanding of Liu Kang's painting materials and his working practice.

Effect of Inorganic Nanocomposite Based Liners on Deodorization of Kimchi

  • Chung, Kwon;Park, Hyun Jin;Shin, Yang Jai
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.2
    • /
    • pp.55-62
    • /
    • 2021
  • This study aims to reduce the rancid odor generated during the fermentation process of kimchi by inserting zinc oxide (ZnO) into an inorganic porous material with a high surface area to decompose or adsorb the fermentation odor. ZnO activated by the presence of moisture exhibits decomposition of rancid odors. Mixed with Titanium dioxide (TiO2), a photocatalyst. To manufacture the packaging liner used in this study, NaOH, ZnCl2, and TiO2 powder were placed in a tank with diatomite and water. The sludge obtained via a hydrothermal ultrasonication synthesis was sintered in an oven. After being pin-milled and melt-blended, the powders were mixed with linear low-density polyethylene (L-LDPE) to make a masterbatch (M/B), which was further used to manufacture liners. A gas detector (GasTiger 2000) was used to investigate the total amount of sulfur compounds during fermentation and determine the reduction rate of the odor-causing compounds. The packaging liner cross-section and surface were investigated using a scanning electron microscope-energy dispersive X-ray spectrometer (SEM-EDS) to observe the adsorption of sulfur compounds. A variety of sulfur compounds associated with the perceived unpleasant odor of kimchi were analyzed using gas chromatography-mass spectrometry (GC-MS). For the analyses, kimchi was homogenized at room temperature and divided into several sample dishes. The performance of the liner was evaluated by comparing the total area of the GC-MS signals of major off-flavor sulfur compounds during the five days of fermentation at 20℃. As a result, Nano-grade inorganic compound liners reduced the sulfur content by 67 % on average, compared to ordinary polyethylene (PE) foam liners. Afterwards SEM-EDS was used to analyze the sulfur content adsorbed by the liners. The findings of this study strongly suggest that decomposition and adsorption of the odor-generating compounds occur more effectively in the newly-developed inorganic nanocomposite liners.

Effect of pyrolysis temperature and pressing load on the densification of amorphous silicon carbide block (열분해 온도와 성형압력의 영향에 따른 비정질 탄화규소 블록의 치밀화)

  • Joo, Young Jun;Joo, Sang Hyun;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.271-276
    • /
    • 2020
  • In this study, an amorphous SiC block was manufactured using polycarbosilane (PCS), an organosilicon polymer. The dense SiC blocks were easily fabricated in various shapes via pyrolysis at 1100℃, 1200℃, 1300℃, 1400℃ after manufacturing a PCS molded body using cured PCS powder. Physical and chemical properties were analyzed using a thermogravimetric analyzer (TGA), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and universal testing machine (UTM). The prepared SiC block was decomposed into SiO and CO gas as the temperature increased, and β-SiC crystal grains were grown in an amorphous structure. In addition, the density and flexural strength were the highest at 1.9038 g/㎤ and 6.189 MPa of SiC prepared at 1100℃. The manufactured amorphous silicon carbide block is expected to be applicable to other fields, such as the previously reported microwave assisted heating element.