• Title/Summary/Keyword: SEM : scanning electron microscope

Search Result 1,887, Processing Time 0.037 seconds

Exhaust Gas Emission and Particulate Matter (PM) from Gasoline, LPG and Diesel Vehicle Using Different Engine Oil (가솔린, LPG, 디젤 차량에서 윤활유에 따른 배출가스 및 입자상물질)

  • Jang, Jinyoung;Lee, Youngjae;Kwon, Ohseok;Woo, Youngmin;Cho, Chongpyo;Kim, Gangchul;Pyo, Youngdug;Lee, Minseob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 2016
  • This study effect of engine oils on regulated fuel economy and emissions including particulate matter (PM) to provide basic data for management of engine oil in vehicles. Three engine oils (Group III base oil, Group III genuine oil with additive package and synthetic oil with poly alpha olefins (PAOs)) were used in one gasoline, one LPG(liquefied petroleum gas) and two diesel vehicles. In the case of diesel vehicles, one is a diesel vehicle without DPF (diesel particulate filter) other is a diesel vehicle with DPF. In this study, the US EPA emission test cycle FTP-75, representing city driving, was used. HORIBA, PIERBURG, and AVL gas analyzers were used to measure the fuel economy and regulated emissions such as CO, NOx, and THC. The number of PM was measured using a PPS (pegasor particle sensor). And, the shape of PMs was analyzed by SEM (scanning electron microscope). The effects of oil type on fuel economy, exhaust gas, and PM were not significant because engine oil consumption by evaporation and combustion in the cylinder is very tiny. Fuel and vehicle type were dominant factors in fuel economy and emissions. HC emission from gasoline vehicles was higher than that from other vehicles and NOx emission from diesel vehicles was higher than that from other vehicles. The number of PM was not affected by the engine oil, but by the driving pattern and fuel. The shapes of the PM, sampled from each vehicle using any test engine oil, were similar.

Antimicrobial Effect of Extract of Glycyrrhiza uralensis on Methicillin-Resistant Staphylococcus aureus (감초 추출물이 항생제 내성균주의 항균활성에 미치는 영향)

  • Lee, Ji-Won;Ji, Young-Ju;Yu, Mi-Hee;Im, Hyo-Gwon;HwangBo, Mi-Hyang;Lee, In-Seon
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.456-464
    • /
    • 2005
  • Antimicrobial drug-resistance is natural response to antimicrobial stress based on selection, which weakens chemotherapy effect. Introduction of large numbers of chemotherapeutic agents to clinical practice has generated strains of microorganisms that survive and multiply in vivo with high-drug concentrations. Methicillin-resistant Staphylococcus aureus (MRSA), bacteria found in normal daily life, can be easily ingested through milk vegetables, and meats, etc. MRSA emerged in many port of the world, increasing complex clinical problems. Therefore, new agents are needed to treat MRSA. Glycyrrhiza uralensis was extracted using 80% MeOH to investigate its antimicrobial activity against MRSA stains KCCM 11812, 40510, and 40512 through bacterial measurement, disc diffusion, and O.D. methods, MIC values, MRSA gene expression investigation, and scanning electron microscope observation. Results revealed MecA, Mecl, MecRI, and FemA were the most highly manifested MRSA genes. Methanolic extract of G. uralensis significantly inhibited MRSA and thus could be used in development of antibacteria.

Millimeter-Scale Aligned Carbon Nanotubes Synthesized by Oxygen-Assisted Microwave Plasma CVD (MPCVD를 이용하여 밀리미터 길이로 수직 정렬된 탄소나노튜브의 합성)

  • Kim, Y.S.;Song, W.S.;Lee, S.Y.;Choi, W.C.;Park, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2009
  • Millimeter-scale aligned arrays of thin-multiwalled carbon nanotube (t-MWCNT) on layered Si substrates have been synthesized by oxygen-assisted microwave plasma chemical vapor deposition (MPCVD). We have succeeded in growth of vertically aligned MWCNTs up to 2.7 mm in height for 150 min. The effect of $O_2$ and water vapour on growth rate was systematically investigated. In the case of $O_2$ gas, the growth rate was ${\sim}22{\mu}m/min$, which is outstanding growth rate comparing with those of conventional thermal CVD (TCVD). Scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and Raman spectroscopy were used to analyze the CNT morphology, composition and growth mechanism. The role of $O_2$ gas during the CNT growth was discussed on.

THE EFFECT OF ETCHING TIME ON SHEAR BOND STRENGTH AND ADAPTIBILITY OF ONE-BOTTLE DENTIN ADHESIVE (One-bottle 상아질 접착제의 전단결합강도와 접착성에 관한 부식시간의 효과)

  • Park, Kwang-Soo;Park, Il-Yoon;Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.240-250
    • /
    • 1999
  • The purpose of this study was to evaluate the effect of different etching time on the shear bond strength and adaptibility of composite to enamel and dentin when used one-bottle adhesive Prime & Bond$^{TM}$ 2.0. The proximal and occlusal surfaces of 88 extracted human molars were ground to expose enamel(n=44) and dentin (=44) using diamond wheel saw. Teeth were randomly assigned to four test groups(n=11) and received the following treatments : Control group were conditioned with 36% phosphoric acid for 20 sec. according to the manufacturer's directions. Experimental 10 sec. group, 30 sec. group and 60 sec. group were conditioned with 36% phosphoric acid for 10 sec., 30 sec. and 60 sec., respectively. Teeth were rinsed and dried for 2 sec. Prime & Bond$^{TM}$ 2.0 were applied according to the manufacturer's directions and Spectrum$^{TM}$ TPH composite resins were bonded to enamel and dentin surfaces. All specimens were stored in distilled water for 24 hours. Eighty specimens were sheared in a Universal Testing Machine with a crosshead speed of 5mm/minute. One way ANOVA and LSD test were used for statistical analysis of the data. Failure modes of all specimens after shear bond strength test were examined and listed. Also, representive postfracture modes and eight specimens were examined under scanning electron microscope. The results of this study were as follows: 1. The shear bond strength to enamel was the highest value in 30 sec. group (20.68${\pm}$8.54MPa) and the lowest value in 10 sec. group (14.92${\pm}$6.07MPa), so there was significant difference of shear bond strength between two groups (p<0.05). But there was no significant difference among other groups (p>0.05). With longer etching time to enamel from 10 sec. to 30 sec., higher the shear bond strength was obtained, but the shear bond strength was decreased at 60 sec. etching time. 2. The shear bond strength to dentin was the highest value in control group (13.08${\pm}$6.25MPa) and the lowest value in 60 sec. group (9.47${\pm}$3.35MPa), but there was no significant difference among the all groups (p>0.05). The eching time over 20 sec. decreased the shear bond strength to dentin. 3. In SEM observation, the enamel and resin interfaces were showed close adaptation with no relation to etching time of enamel. And the dentin and resin interfaces were showed close adaptation at 20 sec. and 30 sec. etching time, but showed some gaps at 10 sec. and 60 sec. etching time. Accordingly, these results indicated that a appropriate etching time in Prime & Bond$^{TM}$ 2.0 was required to be 30 sec. in enamel and 20 sec. in dentin for the high shear bond strength and good adaptation between the composite resin and tooth substance.

  • PDF

Physicochemical Properties of Non-waxy Rice Flour Affected by Grinding Methods and Steeping Times (제분방법 및 수침시간을 달리한 멥쌀가루의 이화학적 특성)

  • Kim, Rae-Young;Kim, Chang-Soon;Kim, Hyuk-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.8
    • /
    • pp.1076-1083
    • /
    • 2009
  • The physicochemical properties of rice flour produced by 3 different grinding methods using various steeping times (3, 6, 9, and 12 hrs) were investigated. Roller mill gave coarse rice flour; the pin mill, intermediate flour; and mixed when both (roller & pin mills) were used. With the increase of steeping times, the rice flours became finer and the contents of crude protein, crude fat and crude ash decreased. Damaged starch was noticeably high in rice flour by roller & pin mills compared to those by roller or pin mills alone. Amylose contents, solubility and swelling power increased as the steeping times increased. Water binding capacity was the highest in roller & pin mills, followed by pin mill. In scanning electron microscope (SEM), pin mill showed distribution of separated fine particles of rice flours. The physicochemical properties of rice flours showed many differences by steeping times of rice and grinding methods. With sufficient steeping times, the rice flours obtained from pin mill were relatively fine having less damaged starch.

Monolithic 3D-IC 구현을 위한 In-Sn을 이용한 Low Temperature Eutectic Bonding 기술

  • Sim, Jae-U;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.338-338
    • /
    • 2013
  • Monolithic three-dimensional integrated circuits (3D-ICs) 구현 시 bonding 과정에서 발생되는 aluminum (Al) 이나 copper (Cu) 등의 interconnect metal의 확산, 열적 스트레스, 결함의 발생, 도펀트 재분포와 같은 문제들을 피하기 위해서는 저온 공정이 필수적이다. 지금까지는 polymer 기반의 bonding이나 Cu/Cu와 같은 metal 기반의 bonding 등과 같은 저온 bonding 방법이 연구되어 왔다. 그러나 이와 같은 bonding 공정들은 공정 시 void와 같은 문제가 발생하거나 공정을 위한 특수한 장비가 필수적이다. 반면, 두 물질의 합금을 이용해 녹는점을 낮추는 eutectic bonding 공정은 저온에서 공정이 가능할 뿐만 아니라 void의 발생 없이 강한 bonding 강도를 얻을 수 있다. Aluminum-germanium (Al-Ge) 및 aluminum-indium (Al-In) 등의 조합이 eutectic bonding에 이용되어 각각 $424^{\circ}C$$454^{\circ}C$의 저온 공정을 성취하였으나 여전히 $400^{\circ}C$이상의 eutectic 온도로 인해 3D-ICs의 구현 시에는 적용이 불가능하다. 이러한 metal 조합들에 비해 indium (In)과 tin (Sn)은 각각 $156^{\circ}C$$232^{\circ}C$로 굉장히 낮은 녹는점을 가지고 있기 때문에 In-Sn 조합은 약 $120^{\circ}C$ 정도의 상당히 낮은eutectic 온도를 갖는다. 따라서 본 연구팀은 In-Sn 조합을 이용하여 $200^{\circ}C$ 이하에서monolithic 3D-IC 구현 시 사용될 eutectic bonding 공정을 개발하였다. 100 nm SiO2가 증착된 Si wafer 위에 50 nm Ti 및 410 nm In을 증착하고, 다른Si wafer 위에 50 nm Ti 및 500 nm Sn을 증착하였다. Ti는 adhesion 향상 및 diffusion barrier 역할을 위해 증착되었다. In과 Sn의 두께는 binary phase diagram을 통해 In-Sn의 eutectic 온도인 $120^{\circ}C$ 지점의 조성 비율인 48 at% Sn과 52 at% In에 해당되는 410 nm (In) 그리고 500 nm (Sn)로 결정되었다. Bonding은 Tbon-100 장비를 이용하여 $140^{\circ}C$, $170^{\circ}C$ 그리고 $200^{\circ}C$에서 2,000 N의 압력으로 진행되었으며 각각의 샘플들은 scanning electron microscope (SEM)을 통해 확인된 후, 접합 강도 테스트를 진행하였다. 추가로 bonding 층의 In 및 Sn 분포를 확인하기 위하여 Si wafer 위에 Ti/In/Sn/Ti를 차례로 증착시킨 뒤 bonding 조건과 같은 온도에서 열처리하고secondary ion mass spectrometry (SIMS) profile 분석을 시행하였다. 결론적으로 본 연구를 통하여 충분히 높은 접합 강도를 갖는 In-Sn eutectic bonding 공정을 $140^{\circ}C$의 낮은 공정온도에서 성공적으로 개발하였다.

  • PDF

Study on Hydrogen Embrittlement for API 5L X65 Steel Using Small Punch Test II : Weld Metal (소형펀치 시험을 이용한 API 5L X65 강의 수소취화에 관한 연구 II : 용접부)

  • Jang, Sang-Yup;Yoon, Kee-Bong
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.56-62
    • /
    • 2009
  • With weld metal of X65 steel, hydrogen was charged by electro-chemical method and mechanical behavior such as strength was measured by the small punch test. The weld metal was more sensitive to hydrogen charging than the case of base metal. The small punch (SP) strength was decreased as the hydrogen contents increased. Magnitude of strength decrease was dependent on current density, temperature, charging time. Current density and charging time have significant effect on the mechanical properties but temperature of electrolyte has limited effect. Fractured surfaces of the tested specimens were observed by SEM (scanning electron microscope). In the hydrogen charged specimens cleavage fracture were observed, which is consistent with the SP test results. Since the testing procedure for studying hydrogen embrittlement proposed in this study has shown good reproducibility of test results, the proposed method can be assumed to be a reliable test procedure. Using the electrochemical charging and the small punch test, the change of SP strength for X65 weld metal due to hydrogen embritlement could be evaluated sensitively.

Changes of the Plastic Lens Properties Caused by Etching of the Coating Films (코팅막 식각으로 인한 플라스틱 렌즈의 특성 변화)

  • Moon, Byeong-Yeon;Hwang, Ki Ju;Lee, Yoon Jeong;Yu, Dong-Sik
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.1
    • /
    • pp.55-60
    • /
    • 2010
  • Purpose: We investigated the changes of plastic lens after etching of coating films by comparing uncoated lens. Methods: CR-39, middle index and high index lenses of 0 (zero) diopter were etched at $80^{\circ}C$ and room temperature using a coating remover, and then changes of refractive power, transmittance and surface morphology were investigated. Results: There were no differences in refractive power and transmittance between uncoated and etched lenses. The etching rate was similar in both CR-39 and middle index lens, but in the case of high index lens, it was slower and less steady than the others. From the SEM observation of lens surface, etching damage was found out on the surface of etched lens. It was shown the least damage in middle index lens but the most damage in high index lens. Conclusions: If the etching of coating films is demanded on condition that the surface of ophthalmic lenses are not damaged, a using of most adequate coating remover based on lens material should be considered, and a caution for proper etching conditions is required.

Ecological and Morphological Characteristics of Zostera caulescens Miki (Zosteraceae) in Korea (한국산 수거머리말(Zostera caulescens Miki.)의 형태 및 생태적 특성에 대한 연구)

  • Lee, Sang-Yong;Suh, Young-Bae;Kim, Sang-Tae;Choi, Chung-Il
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.345-357
    • /
    • 2002
  • Ecological characteristics on habitats and morphological features of the seagrass Zostera caulescens Miki in Korea were examined. The biogeographical distribution of Z. caulescens was confirmed in the south coast of the Korea. Zostera caulescens usually inhabits at the inner bay, where is sheltered from wave action and 3.0 to 6.5 m deep. The sediment in habitats is composed of very fine muddy sand or sandy mud. In morphology, Z. caulescens is easily distinguished from other species of the genus by the formation of vegetative canopy on the top of reproductive stems. The number of longitudinal ribs in testa was 24 revealed by scanning electron microscope (SEM) while the number of ribs in Z. marina has been often reported to be 16-20. Purplish anthocyanin spots were displayed on the surface when the testa was removed. We found that the size and shape of leaf epidermal cells in Z. caulescens were very different from those of Z. marina when the leaf cuticles were removed by maceration which could be useful characters for identifying Zostera species. The leaf of Z. caulescens displays two different casts of color when the fresh plant is closely observed. The margins of leaves appear brighter than the center of leaves due to the thickening by the development of paralleled venation in the middle of leaves. The comparison of two populations of Z. caulescens in Korea showed that they were considerably different in their shoot density and biomass. The shoot density and biomass at Gabae population was $367.3 m^{-2}\;and\;725.7g$ dry wt $m^P{-2}$ respectively, while those at Jukrim population were $112.5m^{-2}\;and\;392.0g\;dry\;wt\;m^{-2}$, respectively.

Preparation of Activated Carbon from Wasted Food by Chemical Activation with Zinc Chloride (염화아연 약품활성화를 이용한 음식물쓰레기로부터 활성탄 제조)

  • Kang, Hwa-Young;Lee, Young-Dong;Kim, Se-Hoon;Park, Sung-Bong;Jung, Jae-Sung;Park, Sang-Sook
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.900-906
    • /
    • 2008
  • It was studied to utilize wasted food as a starting material to produce for activated carbon. The wasted food was chemically activated with zinc chloride. Experiments were carried out at different chemical ratios(activating agent/wasted foods), activation temperatures, and activation time. The activated products were characterized by measuring the iodine and methylene blue number, the BET surface area, the pore volume, the micropore ratio, the pore diameter, the yields and the scanning electron microscope(SEM). For the products activated by impregnation ratio of 1.0 of ZnCl$_2$ at 500$^{\circ}C$ for 60 min in a rotary kiln reactor had iodine number of 480 mg/g, methylene blue number of 95 mL/g, BET surface area of 410 m$^2$/g, pore volume of 0.248 cm$^3$/g, and average pore diameter of 2.43 nm, respectively. The activated carbon obtained had the contribution of micropore area of 70.7% to the total pore area and micropore volume of 53.2% to the total pore volume.