• 제목/요약/키워드: SDOF system

검색결과 143건 처리시간 0.028초

부가감쇠 장치가 설치된 구조물의 1차 모드 등가 감쇠비 산정 (Evaluation of the Equivalent First Modal Damping Ratio of a Structure with Additional Damping Devices)

  • Lee, Sang-Hyun;Min, Kyung-Won;Hwang, Jae-Seung;Lee, Young-Cheol
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.459-466
    • /
    • 2002
  • The purpose of this study is to propose a new method for evaluating equivalent damping ratios of a structure with supplemental damping devices to assess their control effect quantitatively. A MDOF system is transformed to an equivalent SDOF system based on the assumption that the first mode dominates structural response. Approximate closed-form formulas for the evaluation of the first damping ratio are presented for various damping devices. Through numerical analysis of a ten-story building equipped with damping devices, the effectiveness of equivalent SDOF model and closed form formulas are verified.

  • PDF

An equivalent linearization method for nonlinear systems under nonstationary random excitations using orthogonal functions

  • Younespour, Amir;Cheng, Shaohong;Ghaffarzadeh, Hosein
    • Structural Engineering and Mechanics
    • /
    • 제66권1호
    • /
    • pp.139-149
    • /
    • 2018
  • Many practical engineering problems are associated with nonlinear systems subjected to nonstationary random excitations. Equivalent linearization methods are commonly used to seek for approximate solutions to this kind of problems. Compared to various approaches developed in the frequency and mixed time-frequency domains, though directly solving the system equation of motion in the time domain would improve computation efficiency, only limited studies are available. Considering the fact that the orthogonal functions have been widely used to effectively improve the accuracy of the approximated responses and reduce the computational cost in various engineering applications, an orthogonal-function-based equivalent linearization method in the time domain has been proposed in the current paper for nonlinear systems subjected to nonstationary random excitations. In the numerical examples, the proposed approach is applied to a SDOF system with a set-up spring and a SDOF Duffing oscillator subjected to stationary and nonstationary excitations. In addition, its applicability to nonlinear MDOF systems is examined by a 3DOF Duffing system subjected to nonstationary excitation. Results show that the proposed method can accurately predict the nonlinear system response and the formulation of the proposed approach allows it to be capable of handling any general type of nonstationary random excitations, such as the seismic load.

Parametric Analysis and Design of SDOF Vibration-Type Triboelectric Generator

  • ;전지훈;최덕현
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.398-398
    • /
    • 2016
  • A triboelectric generator uses the principles of static electrification and electrostatic induction to convert mechanical energy into useful electrical energy. In this work we study a single degree of freedom (SDOF) vibration type triboelectric generator that is initiated by a vibrating source at its base. The system is modeled in Abaqus and the design parameters are systematically explored by their effect on the output. The relationships between the parameters: input force, input frequency, mass, spring stiffness and gap between the plates, are analyzed. Finally, based on initial experiments, and simulation results, a design methodology is formulated. The methodology will provide guidance for application specific design of reliable and effective vibration type triboelectric generators.

  • PDF

단자유도 시스템의 선형응답과 비탄성응답에 미치는 PSD함수의 영향 (Effect of PSD Function on Linear Response and Inelastic Response of Single Degree of Freedom System)

  • 최동호;이상훈;김용식;고정훈
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.257-259
    • /
    • 2008
  • Acceleration time history (ATH) used in the seismic analysis should envelop a target power spectral density (PSD) function in addition to the design response spectrum in order to have sufficient energy at each frequency for the purpose of ensuring adequate load. Even though design regulations require the ATH used in seismic analysis to meet a target PSD function, the reason that ATHs meet to a target PSD function is not described. Thus, artificial ATHs for high PSD function and artificial ATHs for low PSD function are generated. And then elastic and inelastic single-degree-of-freedom (SDOF) systems are loaded with these artificial time histories as the earthquake load. As a result, linear response and inelastic response of SDOF systems are affected by PSD function.

  • PDF

철골 연성 모멘트 골조의 연성계수 및 강도계수 평가 (Evaluation of Ductility and Strength Factors for Special Steel Moment Resisting Frames)

  • 강철규;최병정
    • 한국강구조학회 논문집
    • /
    • 제16권6호통권73호
    • /
    • pp.793-805
    • /
    • 2004
  • 본 연구에서는 철골 연성 모멘트 골조에 대하여 반응수정계수(R)의 핵심 구성요소인 연성계수 및 강도계수를 평가하였다. 철골 연성 모멘트 골조에 대한 연성계수($R_{{\mu},MDOF}$) 는 단자유도 구조물에 대한 연성계수($R_{{\mu},SDOF}$)에 다자유도 보정계수($R_M$)를 곱하여 산정하였다. 단자유도 구조물에 대한 연성계수($R_{{\mu},SDOF}$)는 지진하중을 받는 탄소성 단자유도(SDOF) 구조물의 목표 변위 연성비와 주기에 따른 비선형 동적해석으로부터 산정하였다. 통계적 연구와 회귀분석으로부터 연성계수를 산정하기 위한 평가식이 제시되었다. 다자유도의 영향을 고려하기 위한 보정계수($R_M$)는 기존의 연구결과로보터 회귀분석을 이용하여 구하였다. 철골 연성 모멘트 골조에 대한 강도계수는 비선형 정적해석으로부터 산정하였다. 철골 연성 모멘트 골조의 연성 계수 및 강도계수를 평가하기 위하여, 구조물의 층수(4, 8 및 16층), 지진구역계수(Z=0.075, 0.2 및 0.4), 골조 시스템(외곽골조 및 분배골조) 및 붕괴 메카니즘(강기둥-약보 및 약기둥-강보)을 설계 매개변수로 하여 총 36개의 예제구조물을 설계하였다. 철골 연성 모멘트 골조의 연성계수 및 강도계수에 이러한 설계 매개변수가 미치는 영향을 분석하였다.

Nonlinear Tuned Mass Damper for self-excited oscillations

  • Gattulli, Vincenzo;Di Fabio, Franco;Luongo, Angelo
    • Wind and Structures
    • /
    • 제7권4호
    • /
    • pp.251-264
    • /
    • 2004
  • The effects of a class of nonlinear Tuned Mass Dampers on the aeroelastic behavior of SDOF systems are investigated. Unlike classical linear TMDs, nonlinear constitutive laws of the internal damping acting between the primary oscillator and the TMD are considered, while the elastic properties are keept linear. The perturbative Multiple Scale Method is applied to derive a set of bifurcation equations in the amplitude and phase and a parametric analysis is performed to describe the postcritical scenario of the system. Both cubic- and van der Pol-type dampings are considered and the dependence of the limit-cycle amplitudes on the system parameters is studied. These new results, compared with the previously obtained bifurcation scenario of a SDOF aeroelastic oscillator equipped with a linear TMD, show a detrimental effect on the maximum limit-cycle amplitude reduction of the nonlinear TMD. However, the analyses evidence that in the parameter region away from the perfect tuning condition the nonlinear connection can be used to tune the system with an enhancement of the limit-cycle amplitude reduction.

Damage-based optimization of large-scale steel structures

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1119-1139
    • /
    • 2014
  • A damage-based seismic design procedure for steel frame structures is formulated as an optimization problem, in which minimization of the initial construction cost is treated as the objective of the problem. The performance constraint of the design procedure is to achieve "repairable" damage state for earthquake demands that are less severe than the design ground motions. The Park-Ang damage index is selected as the seismic damage measure for the quantification of structural damage. The charged system search (CSS) algorithm is employed as the optimization algorithm to search the optimum solutions. To improve the time efficiency of the solution algorithm, two simplifying strategies are adopted: first, SDOF idealization of multi-story building structures capable of estimating the actual seismic response in a very short time; second, fitness approximation decreasing the number of fitness function evaluations. The results from a numerical application of the proposed framework for designing a twelve-story 3D steel frame structure demonstrate its efficiency in solving the present optimization problem.

Bilinear elastodynamical models of cracked concrete beams

  • Pandey, Umesh Kumar;Benipal, Gurmail S.
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.465-498
    • /
    • 2011
  • Concrete structures are generally cracked in flexural tension at working loads. Concrete beams with asymmetric section details and crack patterns exhibit different flexural rigidity depending upon the sense of the applied flexural moment. In this paper, three different models, having the same natural period, of such SDOF bilinear dynamical systems have been proposed. The Model-I and Model-II have constant damping coefficient, but the latter is characterized by two stiffness coefficients depending upon the sense of vibration amplitude. The Model-III, additionally, has two damping coefficients as well. In this paper, the dynamical response of Model-III to sinusoidal loading has been investigated and compared with that of Model-II studied earlier. It has been found that Model-III exhibits regular and irregular sub-harmonics, jump phenomena and strong sensitivity to initial conditions, forcing frequency, system period as well as the sense of peak sinusoidal force. The constant sustained load has been found to affect the natural period of the dynamical system. The predictions of Model-I have been compared with those of the approximate linear model adopted in present practice. The behaviour exhibited by different models of the SDOF cracked elastic concrete structures under working loads and the theoretical and practical implications of the approach followed have been critically evaluated.

감쇠진동계에 부착된 코일스프링과 오일댐퍼로 구성된 동흡진기

  • 최석창;안찬우;박일수;이희범
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.289-293
    • /
    • 1996
  • Vibration absorber is used to protect the primary system from steady-state harmonic disturbance. By attaching the absorber to the primary system which is modeled as a SDOF system, the new system becomes two DOF system. Depending on the driving frequency on the original system, the absorber needs to be carefully tuned, that is, to choose adequate value of the absorber mass and stiffness, so that the motion of the original mass is a minimum. This paper presents the effects of resonance frequency ratio and of vibration absorber with oil damper and coil spring for linear damped primary systems.

  • PDF

Soil interaction effects on the performance of compliant liquid column damper for seismic vibration control of short period structures

  • Ghosh, Ratan Kumar;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.89-105
    • /
    • 2008
  • The paper presents a study on the effects of soil-structure-interaction (SSI) on the performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short period structures. The frequency-domain formulation for the input-output relation of a flexible-base structure with CLCD has been derived. The superstructure has been modeled as a linear, single degreeof-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil medium through linear springs and viscous dashpots, the properties of which have been represented by complex valued impedance functions. By using a standard equivalent linearization technique, the nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A numerical stochastic study has been carried out to study the functioning of the CLCD for varying degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on the optimal value of the orifice damping coefficient of the damper has also been studied. A more convenient approach for designing the damper while considering SSI, by using an established model of a replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study, using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base structure.