• Title/Summary/Keyword: SDB wafer

Search Result 41, Processing Time 0.023 seconds

Study on pre-bonding according with HF pre-treatment conditions in Si wafer direct bonding (실리콘기판 직접접합에 있어서 HF 전처리 조건에 따른 초기접합에 관한 연구)

  • 강경두;박진성;정수태;주병권;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.370-373
    • /
    • 1999
  • Si direct bonding (SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on- pre treatment conditions in Si wafer direct bonding, The paper resents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, applied pressure and annealing temperature(200~ 100$0^{\circ}C$) after pre-bonding. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera, respectively, Components existed in the interlayer were analyzed by using FT-IR. The bond strength depends on the HF pre-treatment condition before pre-bonding(Min 2.4kgf/$\textrm{cm}^2$~ Max : 14.kgf/$\textrm{cm}^2$)

  • PDF

A study on pre-bonding mechanism of Si wafer at HF pre-treatment (HF 전처리시 실리콘 기판의 초기접합 메카니즘에 관한 연구)

  • Kang, Kyung-Doo;Park, Chin-Sung;Lee, Chae-Bong;Ju, Byung-Kwon;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3313-3315
    • /
    • 1999
  • Si direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electric devices and MEMS applications because of its stress free structure and stability. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration, and applied pressure. The bonding strength was evaluated by tensile strength method. The bonded interface and the void were analyzed by using SEM and IR camera respectively. A bond characteristic on the interface was analyzed by using IT- IR. Si-F bonds on Si surface after HF pre-treatment are replaced by Si-OH during a DI water rinse. Consequently, hydrophobic wafer was bonded by hydrogen bonding of Si $OH{\cdots}(HOH{\cdots}HOH{\cdots}HOH){\cdots}OH-Si$. The bond strength depends on the HF pre-treatment condition before pre- bonding (Min:$2.4kgf/crn^2{\sim}Max:14.9kgf/crn^2$)

  • PDF

Fabrication of an acceleration sensor using silicon micromachining and reactive ion etching (실리콘 마이크로머시닝과 RIE를 이용한 가속도센서의 제조)

  • Kim, Dong-Jin;Kim, Woo-Jeong;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.430-436
    • /
    • 1997
  • A piezoresistive acceleration sensor for 30 G has been fabricated by silicon micromachining method using SDB(silicon direct bonding) wafer. The structure of the piezoresistive acceleration sensor consists of a seismic square pillar type mass and four beams. This structure was fabricated by reactive ion etching and chemical etching using KOH-etchant. The rectangular square structure is used in order to compensate the deformation of the edges due to underetching. The fabricated sensor showed a linear output voltage-acceleration characteristics and its sensitivity was about $88{\mu}V/V{\cdot}g$ from 0 to 10 G.

  • PDF

Analysis of Shear Stress Type Piezoresistive Characteristics in Silicon Diaphragm Structure (실리콘 다이아프램 구조에서 전단응력형 압전저항의 특성 분석)

  • Choi, Chae-Hyoung;Choi, Deuk-Sung;Ahn, Chang-Hoi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.55-59
    • /
    • 2018
  • In this paper, we investigated the characteristics of shear stress type piezoresistor on a diaphragm structure formed by MEMS (Microelectromechanical System) technology of silicon-direct-bonding (SDB) wafers with Si/$SiO_2$/Si-sub. The diaphragm structure formed by etching the backside of the wafer using a TMAH aqueous solution can be used for manufacturing various sensors. In this study, the optimum shape condition of the shear stress type piezoresistor formed on the diaphragm is found through ANSYS simulation, and the diaphragm structure is formed by using the semiconductor microfabrication technique and the shear stress formed by boron implantation. The characteristics of the piezoelectric resistance are compared with the simulation results. The sensing diaphragm was made in the shape of an exact square. It has been experimentally found that the maximum shear stress for the same pressure at the center of the edge of the diaphragm is generated when the structure is in the exact square shape. Thus, the sensing part of the sensor has been designed to be placed at the center of the edge of the diaphragm. The prepared shear stress type piezoresistor was in good agreement with the simulation results, and the sensitivity of the piezoresistor formed on the $2200{\mu}m{\times}2200{\mu}m$ diaphragm was $183.7{\mu}V/kPa$ and the linearity of 1.3 %FS at the pressure range of 0~100 kPa and the symmetry of sensitivity was also excellent.

A study on pre-bonding of Si wafer direct bonding at HF pre-treatment (HF 전처리시 Si기판 직접접합의 초기접합에 관한 연구)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.134-140
    • /
    • 2000
  • Si wafer direct bonding(SDB) technology is very attractive for both Si-on-insulator(SOI) electronic devices and MEMS applications. This paper presents on pre-bonding according to HF pre-treatment conditions in Si wafer direct bonding. The characteristics of bonded sample were measured under different bonding conditions of HF concentration and applied pressure. The bonding strength was evaluated by tensile strength method. A bond characteristic on the interface was analyzed by using FT-IR, and surface roughness according to HF concentration was analyzed by AFM. Si-F bonds on Si surface after HF pre-treatment are replaced by Si-OH during a DI water rinse. Consequently, hydrophobic wafer was bonded by hydrogen bonding of Si-OH$\cdots$(HOH$\cdots$HOH$\cdots$HOH)$\cdots$OH-Si. The pre-bonding strength depends on the HF pre-treatment condition before pre-bonding. (Min : $2.4kgf/cm^2{\sim}$Max : $14.9kgf/cm^2$)

  • PDF

Temperature compensation method of piezoresistive pressure sensor using compensating bridge (보상용 브릿지를 이용한 압저항형 압력센서의 온도보상 방법)

  • 손원소;이재곤;최시영
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.5
    • /
    • pp.63-68
    • /
    • 1998
  • The absolute pressure sensor using SDB wafer has been fabricated. the structure of the sensor consists of two wheatstone bridges and a diaphragm. One of the two wheatstone bridges is located on the edge of diaphragm, and the other is located on the center of diaphragm. The diaphragm cavity is sealted in vacuum (~10$^{5}$ Torr) to reduce the effect of temperature due to the vapor in the cavity on the sensitivity of pressure sensor. This is the minor method of temperature compensation method. In this experiment the main compensation method is to use the difference of the two bridge offset voltages. The drift of offset voltage with temperature is reduced by using this method so that temperature charcteristics is improved. In this method the temperature effect in the range of 22~100.deg. C was compensated over 80%.

  • PDF

SOl Pressure Sensors (SOI 압력(壓力)센서)

  • Chung, Gwiy-Sang;Ishida, Makoto;Nakamura, Tetsuro
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.5-11
    • /
    • 1994
  • This paper describes the characteristics of a piezoresistive pressure sensor fabricated on a SOI (Si-on-insulator) structure, in which the SOI structures of Si/$SiO_{2}$/Si and Si/$Al_{2}O_{3}$/Si were formed by SDB (Si-wafer direct bonding) technology and hetero-epitaxial growth, respectively. The SOI pressure sensors using the insulator of a SOI structure as the dielectrical isolation layer of piezoresistors, were operated at higher temperatures up to $300^{\circ}C$. In the case of pressure sensors using the insulator of a SOI structure as an etch-stop layer during the formation of thin Si diaphragms, the pressure sensitivity variation of the SOI pressure sensors was controlled to within a standard deviation of ${\pm}2.3%$ over 200 devices. Moreover, the pressure sensors fabricated on the double SOI ($Si/Al_{2}O_{3}/Si/SiO_{2}/Si$) structures formed by combining SDB technology with epitaxial growth also showed very excellent characteristics with high-temperature operation and high-resolution.

  • PDF

Fabrication and Characteristics Comparison of Piezoresistive Four Beam Silicon Accelerometer Based on Beam Location (빔 위치변화에 따른 4빔 압저항형 실리콘 가속도 센서의 제조 및 특성비교)

  • Shin, Hyun-Ok;Son, Seung-Hyun;Choi, Sie-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.26-33
    • /
    • 1999
  • In order to examine the effect of beam location n the performance of bridge type piozoresistive silicon accelerometer, three sensors having different location of beams were simulated by FEN(finite element method) and fabricated by RIE(reactive ion etching) and KOH etching method using SDB(silicon direct bonding) wafer, Results of the FEM simulation present that the 1st resonace frequency and Z axis sensitivity of each sensor are identical but the 2nd, and the 3rd resonace frequency and X, Y axis sensitivity are different. Even though the 1st resonance frequency and Z axis sensitivity measured from fabricated sensors do not perfectly coincide with each other, all 3 type sensors present 180 ~ 220N/G of Z sensitivity at 5 V supply voltage and 1.3 ~ 1.7kHz of the 1st resonance frequency and about 2% of lateral sensitivity.

  • PDF

Fabrication of Bump-type Probe Card Using Bulk Micromachining (벌크 마이크로머시닝을 이용한 Bump형 Probe Card의 제조)

  • 박창현;최원익;김용대;심준환;이종현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.661-669
    • /
    • 1999
  • A probe card is one of the most important pan of test systems as testing IC(integrated circuit) chips. This work was related to bump-type silicon vertical probe card which enabled simultaneous tests for multiple semiconductor chips. The probe consists of silicon cantilever with bump tip. In order to obtain optimum size of the cantilever, the dimensions were determined by FEM(finite element method) analysis. The probe was fabricated by RIE(reactive ion etching), isotropic etching, and bulk-micromachining using SDB(silicon direct bonding) wafer. The optimum height of the bump of the probe detemimed by FEM simulation was 30um. The optimum thickness, width, and length of the cantilever were 20 $\mum$, 100 $\mum$,and 400 $\mum$,respectively. Contact resistance of the fabricated probe card measured at contact resistance testing was less than $2\Omega$. It was also confirmed that its life time was more than 20,000 contacts because there was no change of contact resistance after 20,000 contacts.

  • PDF

Fabrication of a micromachined ceramic thin-film type pressure sensor for high overpressure tolerance and Its characteristics (과부하 방지용 마이크로머시닝 세라믹 박막형 압력센서의 제작과 그 특성)

  • Kim, Jae-Min;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.199-204
    • /
    • 2003
  • This paper describes on the fabrication and characteristics of a ceramic thin-film pressure sensor based on Ta-N strain-gauges for harsh environment applications. The Ta-N thin-film strain-gauges are sputter-deposited onto a micromachined Si diaphragms with buried cavity for overpressure protectors. The proposed device takes advantages of the good mechanical properties of single-crystalline Si as diaphragms fabricated by SDB and electrochemical etch-stop technology, and in order to extend the operating temperature range, it incorporates relatively the high resistance, stability and gauge factor of Ta-N thin-films. The fabricated pressure sensor presents a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is $1.097-1.21\;mV/V{\codt}kgf/cm^2$ in the temperature range of $25-200^{\circ}C$ and the maximum non-linearity is 0.43%FS.