• Title/Summary/Keyword: SCS method

Search Result 1,172, Processing Time 0.025 seconds

Preparation and Characteristics of Chestnut Mooks (밤묵의 제조와 그 특성)

  • 윤광섭;김순동;신승렬
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.429-434
    • /
    • 1999
  • This study was undertaken to investigate preparation possibility of chestnut mooks added chestnut shell. Three types of chesetnut starches which were flesh starch(FS), inside shell containing starch(ISS), and shell containing starch(SCS) and acorn starch(AS) as control were used to preparation of mook. The crude tannin contents of chestnut starches was about 25% of that in acorn starch. In the textural properies, hardness of mooks was increased in proportion to the increasing concentration of starches. Hardness md cohesiveness of mooks with chesnut starches were higher than those of acorn starch. Color properties of mooks with OSS were similar to that of AS. Sensory evaluation by 9-point method indicated that the nooks with ISS had greater intensities in all investigation items. The total scores were higher in order of ISS, AS, FS and SCS. The mook with ISS had homogeneous and porous structure by SEM.

  • PDF

Moment curvature method for fire safety design of steel beams

  • Yu, H.X.;Richard Liew, J.Y.
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.227-246
    • /
    • 2004
  • This paper presents a moment-curvature method that accounts for the strength deterioration of steel at elevated temperature in estimating the response of steel beams exposed to fire. A modification to the EC4 method is proposed for a better estimation of the temperature distribution in the steel beam supporting a concrete slab. The accuracy of the proposed method is verified by comparing the results with established test results and the nonlinear finite element analysis results. The beam failure criterion based on a maximum strain of 0.02 is proposed to assess the limiting temperature as compared to the traditional criteria that rely on deflection limit or deflection rate. Extensive studies carried out on steel beams with various span lengths, load ratios, beam sizes and loading types show that the proposed failure criterion gives consistent results when compared to nonlinear finite element results.

Numerical analysis of FGM plates with variable thickness subjected to thermal buckling

  • Bouguenina, Otbi;Belakhdar, Khalil;Tounsi, Abdelouahed;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.679-695
    • /
    • 2015
  • A numerical solution using finite difference method to evaluate the thermal buckling of simply supported FGM plate with variable thickness is presented in this research. First, the governing differential equation of thermal stability under uniform temperature through the plate thickness is derived. Then, the governing equation has been solved using finite difference method. After validating the presented numerical method with the analytical solution, the finite difference formulation has been extended in order to include variable thickness. The accuracy of the finite difference method for variable thickness plate has been also compared with the literature where a good agreement has been found. Furthermore, a parametric study has been conducted to analyze the effect of material and geometric parameters on the thermal buckling resistance of the FGM plates. It was found that the thickness variation affects isotropic plates a bit more than FGM plates.

Simulating the construction process of steel-concrete composite bridges

  • Wu, Jie;Frangopol, Dan M.;Soliman, Mohamed
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1239-1258
    • /
    • 2015
  • This paper presents a master-slave constraint method, which may substitute the conventional transformed-section method, to account for the changes in cross-sectional properties of composite members during construction and to investigate the time-dependent performance of steel-concrete composite bridges. The time-dependent effects caused by creep and shrinkage of concrete are considered by combining the age-adjusted effective modulus method and finite element analysis. An efficient computational tool which runs in AutoCAD environment is developed to simulate the construction process of steel-concrete composite bridges. The major highlight of the developed tool consists in a very convenient and user-friendly interface integrated in AutoCAD environment. The accuracy of the proposed method is verified by comparing its results with those provided by using the transformed-section method. Furthermore, the computational efficiency of the developed tool is demonstrated by applying it to a steel-concrete composite bridge.

Iterative global-local procedure for the analysis of thin-walled composite laminates

  • Afnani, Ashkan;Erkmen, R. Emre
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.693-718
    • /
    • 2016
  • This paper presents a finite element procedure based on Bridging multi-scale method (BMM) in order to incorporate the effect of local/cross-sectional deformations (e.g., flange local buckling and web crippling) on the global behaviour of thin-walled members made of fibre-reinforced polymer composite laminates. This method allows the application of local shell elements in critical regions of an existing beam-type model. Therefore, it obviates the need for using computationally expensive shell elements in the whole domain of the structure, which is otherwise necessary to capture the effect of the localized behaviour. Consequently, highly accurate analysis results can be achieved with this method by using significantly smaller finite element model, compared to the existing methods. The proposed method can be used for composite polymer laminates with arbitrary fibre orientation directions in different layers of the material, and under various loading conditions. Comparison with full shell-type finite element analysis results are made in order to illustrate the efficiency and accuracy of the proposed technique.

Reliability analysis of steel cable-stayed bridges including soil-pile interaction

  • Cheng, Jin;Liu, Xiao-luan
    • Steel and Composite Structures
    • /
    • v.13 no.2
    • /
    • pp.109-122
    • /
    • 2012
  • An efficient and accurate algorithm is proposed to evaluate the reliability of cable-stayed bridges accounting for soil-pile interaction. The proposed algorithm integrates the finite-element method and the response surface method. The finite-element method is used to model the cable-stayed bridge including soil-pile interaction. The reliability index is evaluated based on the response surface method. Uncertainties in the superstructure, the substructure and load parameters are incorporated in the proposed algorithm. A long span steel cable-stayed bridge with a main span length of 1088 m built in China is considered as an illustrative example. The reliability of the bridge is evaluated for the strength and serviceability performance functions. Results of the study show that when strength limit states for both girder and tower are considered, soil-pile interaction has significant effects on the reliability of steel cable-stayed bridges. Further, a detailed sensitivity study shows that the modulus of subgrade reaction is the most important soil-pile interaction-related parameter influencing the reliability of steel cable-stayed bridges.

Hybrid of topological derivative-based level set method and isogeometric analysis for structural topology optimization

  • Roodsarabi, Mehdi;Khatibinia, Mohsen;Sarafrazi, Seyyed R.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1389-1410
    • /
    • 2016
  • This paper proposes a hybrid of topological derivative-based level set method (LSM) and isogeometric analysis (IGA) for structural topology optimization. In topology optimization a significant drawback of the conventional LSM is that it cannot create new holes in the design domain. In this study, the topological derivative approach is used to create new holes in appropriate places of the design domain, and alleviate the strong dependency of the optimal topology on the initial design. Furthermore, the values of the gradient vector in Hamilton-Jacobi equation in the conventional LSM are replaced with a Delta function. In the topology optimization procedure IGA based on Non-Uniform Rational B-Spline (NURBS) functions is utilized to overcome the drawbacks in the conventional finite element method (FEM) based topology optimization approaches. Several numerical examples are provided to confirm the computational efficiency and robustness of the proposed method in comparison with derivative-based LSM and FEM.

Shear bond failure in composite slabs - a detailed experimental study

  • Chen, Shiming;Shi, Xiaoyu;Qiu, Zihao
    • Steel and Composite Structures
    • /
    • v.11 no.3
    • /
    • pp.233-250
    • /
    • 2011
  • An experimental study has been carried out to reveal the shear-bond failure mechanism of composite deck slabs. Thirteen full scale simply supported composite slabs are studied experimentally, with the influence parameters like span length, slab depth, shear span length and end anchorage provided by steel headed studs. A dozen of strain gauges and LVDTs are monitored to capture the strain distribution and variation of the composite slabs. Before the onset of shear-bond slip, the longitudinal shear forces along the span are deduced and found to be proportional to the vertical shear force in terms of the shear-bond strength in the m-k method. The test results are appraised using the current design procedures. Based on the partial shear-bond connection at the ultimate state, an improved method is proposed by introducing two reduction factors to assess the moment resistance of a composite deck slab. The new method has been validated and the results predicted by the revised method agree well with the test results.

Topology optimization of steel plate shear walls in the moment frames

  • Bagherinejad, Mohammad Hadi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.771-783
    • /
    • 2018
  • In this paper, topology optimization (TO) is applied to find a new configuration for the perforated steel plate shear wall (PSPSW) based on the maximization of reaction forces as the objective function. An infill steel plate is introduced based on an experimental model for TO. The TO is conducted using the sensitivity analysis, the method of moving asymptotes and SIMP method. TO is done using a nonlinear analysis (geometry and material) considering the buckling. The final area of the optimized plate is equal to 50% of the infill plate. Three plate thicknesses and three length-to-height ratios are defined and their effects are investigated in the TO. It indicates the plate thickness has no significant impact on the optimization results. The nonlinear behavior of optimized plates under cyclic loading is studied and the strength, energy and fracture tendency of them are investigated. Also, four steel plates including infill plate, a plate with a central circle and two types of the multi-circle plate are introduced with equal plate volume for comparing with the results of the optimized plate.

Buckling analysis of functionally graded plates resting on elastic foundation by natural element method

  • Cho, J.R.
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.171-181
    • /
    • 2022
  • Functionally graded material (FGM) has been spotlighted as an advanced composite material due to its excellent thermo-mechanical performance. And the buckling of FGM resting on elastic foundations has been a challenging subject because its behavior is directly connected to the structural safety. In this context, this paper is concerned with a numerical buckling analysis of metal-ceramic FG plates resting on a two-parameter (Pasternak-type) elastic foundation. The buckling problem is formulated based on the neutral surface and the (1,1,0) hierarchical model, and it is numerically approximated by 2-D natural element method (NEM) which provides a high accuracy even for coarse grid. The derived eigenvalue equations are solved by employing Lanczos and Jacobi algorithms. The numerical results are compared with the reference solutions through the benchmark test, from which the reliability of present numerical method has been verified. Using the developed numerical method, the critical buckling loads of metal-ceramic FG plates are parametrically investigated with respect to the major design parameters.