• Title/Summary/Keyword: SCS Curve Number

Search Result 90, Processing Time 0.026 seconds

The Optimum Irrigation Level and the Project Water Requirement for Upland Crops (밭 작물의 최적관개수준과 계획용수량 산정)

  • 윤학기;정상옥;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.72-86
    • /
    • 1990
  • This study was carried out to get the basic information of irrigation plans for upland crops such as the optimum irrigation level and the project water requirement. Red peppers and cucumbers were cultivated in PVC pot lysimeters filled with 60cm deep clay loam soil. Four tensiometers were installed in each pot to measure the soil water pressure head. Six levels of irrigation were used. The results obtained from this study are summarized as follows: 1.The optimum irrigation level. The irrigation level of FC-PF2.7 was found to be the optimum level for both red pepper and cucumber with respect to the yield and the weight per fruit. In case of FC-PF2.7, total ET during the irrigation period were 1005.2mm for red pepper, and 429.6mm for cucumber, respectively. 2.soil moisture extraction patterns. Average soil moisture extraction patterns (SMEP)during the irrigation period were from 1st soil layer 43% : 32% : 16% : 9% for red pepper and 39% : 34% : 15% : 12% for cucumber, respectively. The extraction ratio of the upper soils showed very large values during the early stage of growth and decreased largely during the middle stage, and became larger in the last stage. 3.The project water requirement. Among the reference crop evapotranspiration(ETo) computation methods presented by FAO, the Penman method was found to be the best. The effective rainfall was computed by a modified USDA-SCS curve number equation. Availability ratios of the total rainfall during irrigation season were 59.2% for red pepper and 48.9% for cucumber, respectively. Net project water requirement of design year are 837.3mm for red pepper. and 502.Smm for cucumber, respectively.

  • PDF

Estimation of Nonpoint Source Pollutant Loads of Juam-Dam Basin Based on the Classification of Satellite Imagery (위성영상 분류 기반 주암댐 유역 비점오염부하량 평가)

  • Lee, Geun-Sang;Kim, Tae-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.1-12
    • /
    • 2012
  • The agricultural area was classified into dry and paddy fields in this study using the near-infrared band of Landsat TM to extract land cover classes that need to the application of Expected Mean Concentration (EMC) in nonpoint source works. The accuracy of image classification of the land cover map from Landsat TM image showed 83.61% and 78.41% respectively by comparing with the large and middle scale land cover map of Ministry of Environment. As the result of Soil Conservation Service (SCS) Curve Number (CN) using the land cover map from image classification, Dongbok dam and Dongbok stream basin were analyzed high. Also Geymbaek water-gage and Bosunggang upstream basin showed high in the analysis of EMC of BOD, TN, TP by basin. And also Geymbaek water-gage and Bosunggang upstream basin showed high in the analysis of non-point source through coupling with direct runoff. Therefore these basins were selected with the main area for the management of nonpoint source.

Comparison of runoff characteristics before urbanization in Pangyo new town using CAT and HEC-HMS (CAT모형과 HEC-HMS를 이용한 판교 신도시 개발 전 유출 특성 비교)

  • Choi, Shinwoo;Kim, Hyeonjun;Jang, Cheolhee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.168-168
    • /
    • 2016
  • 도시화는 수문학적으로 산림이나 농경지와 같은 투수지역을 건물, 도로 등의 불투수 지역으로 변화시키는 것이며, 이로 인하여 홍수파의 도달시간이 줄어들고 첨두유량이 증가하는 등의 수문변화를 수반하게 된다. 도로나 건물 등이 대부분을 차지하고 있는 도시지역에서는 지표면이나 식생으로부터 대기 중으로 방출되는 증발산량이 농촌이나 산림지역보다 상대적으로 적으며, 강우시 토양중의 침투량과 지표면의 저류량도 도시지역에서는 매우 적게 나타난다. 도시화 전 후의 물순환특성을 평가하기 위해서는 도시 개발 전 후의 장단기 수문 관측 결과를 기초로 물순환계를 구성하는 인자간의 관계를 정량적으로 분석하고 물순환계 구성요소의 일부 변화가 다른 부분에 미치는 영향을 평가할 필요가 있다. 즉, 도시화가 물순환 구조 변동에 미치는 영향을 정량적으로 평가함으로써 유역 전체의 건전한 물순환 체계를 유지할 수 있는 대책 수립이 가능하다. 본 연구에서는 판교신도시 개발에 따른 유역에서의 홍수 및 유출특성 변화의 정량적 규명을 목적으로 두고 집중형 모형인 HEC-HMS모형과 물리적 기반의 준분포형 모형인 CAT을 이용하여 판교신도시 개발전의 정량적 물순환 특성을 평가하였다. 대상유역은 지방 2급 하천 탄천의 지류인 운중천, 금토천이 포함된 판교유역이며, 유역면적은 약 $25km^2$이다. 이 중 유역면적의 38 %에 해당하는 지역이 개발되었으며 개발된 지역은 하류부근에 위치한다. 강우자료는 지상 강우관측소인 수원 관측소의 지점강우 자료를 이용하였다. 도시 개발 전 단계에 해당하는 2006년, 2007년 호우사상 중 누적강우량 50 mm 이상인 호우사상을 추출하여 모의를 수행하였다. 유출 특성 분석을 위해 12개의 소유역과 5개의 하도로 구성하였으며 HEC-HMS의 손실량 산정방법으로는 SCS Curve Number법을 사용하였고, 단위도는 Clark 단위 도법을 적용하였다. CAT모형에서 침투는 Rainfall Excess방법, 하도추적은 Muskingum 방법을 적용하였다. 관측치와 모의치의 적합도 검증을 위해 RMSE (Root Mean Square Error), NSE (Nash Sutcliffe Efficiency), $R^2$값을 산정하여 비교 분석하였다.

  • PDF

Analysis of soil moisture and drought in agricultural lands based on Terra MODIS using smart farm map and soil physical properties (스마트팜맵과 토양물리특성을 활용한 Terra MODIS 기반의 농지 토양수분 및 가뭄 현황 분석)

  • Jeehun Chung;Yonggwan Lee;Chan Kang;Jonghan Bang;Seongjoon Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.375-375
    • /
    • 2023
  • 본 연구는 농지를 대상으로 토양수분 및 가뭄 현황을 분석하는 데 그 목적이 있다. 토양수분을 파악하기 위해 Terra MODIS(Moderate Resolution Imaging Spectroradiometer) 위성영상기반의 토양수분 산정모형을 개발하였다. 해당 모형은 MODIS LST(Land Surface Temperature) 및 NDVI(Normalized Difference Deficit Index)를 기반으로 SCS-CN(Soil Conservation Service-Curve Number) 방법에서 착안한 수문학적 개념 5일 선행강우 및 무강우일수를 입력자료로 하며, 토양 종류 및 계절에 따른 토양수분의 특성을 고려하였다. 모형의 개발을 위해 MODIS LST 및 NDVI 영상을 2013년부터 2022년까지 각각 일별 및 16일 단위로 구축하였으며, 동 기간에 대해 전국 88개소의 기상청 종관기상관측소의 강수량 및 LST 자료를 수집하였다. MODIS LST는 실측 LST 자료를 활용해 조건부합성기법을 적용하여 상세화하였고, 수집된 강수량자료는 역거리가중법을 활용해 공간 보간을 수행하였다. 토양특성의 구분은 농촌진흥청에서 정밀토양도를 수집하여 활용하였다. 공간 분포된 토양수분에서 농지에 해당하는 토양수분을 추출하기 위해 스마트팜맵을 구축하고, 농지 속성에 해당하는 위치 정보를 조회 후 이를 시군구별로 평균하여 일별 평균 토양수분값을 산정하였다. 토양수분 기반의 가뭄 현황 분석을 위해 구축된 정밀토양도에서 작물 생장과 관련된 영구위조점 및 포장용수량을 활용해 5단계(정상, 관심, 주의, 경계, 심각)의 가뭄 위험도를 산정하였으며, 실제 가뭄 현황과의 비교를 통해 토양수분기반의 가뭄 위험도의 실효성을 검증하고자 한다.

  • PDF

Parameter Estimation of Water Balance Analysis Method and Recharge Calculation Using Groundwater Levels (지하수위를 이용한 물수지분석법의 매개변수추정과 함양량산정)

  • An, Jung-Gi;Choi, Mu-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.299-311
    • /
    • 2006
  • In this paper it is outlined the methodology of estimating the parameters of water balance analysis method for calculating recharge, using ground water level rises in monitoring well when values of specific yield of aquifer are not available. This methodology is applied for two monitoring wells of the case study area in northern area of the Jeiu Island. A water balance of soil layer of plant rooting zone is computed on a daily basis in the following manner. Diect runoff is estimated by using SCS method. Potential evapotranspiration calculated with Penman-Monteith equation is multiplied by crop coefficients($K_c$) and water stress coefficient to compute actual evapotranspiration(AET). Daily runoff and AET is subtracted from the rainfall plus the soil water storage of the previous day. Soil water remaining above soil water retention capacity(SWRC) is assumed to be recharge. Parameters such as the SCS curve number, SWRC and Kc are estimated from a linear relationship between water level rise and recharge for rainfall events. The upper threshold value of specific yield($n_m$) at the monitoring well location is derived from the relationship between rainfall and the resulting water level rise. The specific yield($n_c$) and the coefficient of determination ($R^2$) are calculated from a linear relationship between observed water level rise and calculated recharge for the different simulations. A set of parameter values with maximum value of $R^2$ is selected among parameter values with calculated specific yield($n_c$) less than the upper threshold value of specific yield($n_m$). Results applied for two monitoring wells show that the 81% of variance of the observed water level rises are explained by calculated recharge with the estimated parameters. It is shown that the data of groundwater level is useful in estimating the parameter of water balance analysis method for calculating recharge.

Uncertainty Assessment of Single Event Rainfall-Runoff Model Using Bayesian Model (Bayesian 모형을 이용한 단일사상 강우-유출 모형의 불확실성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Lee, Jong-Seok;Na, Bong-Kil
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.505-516
    • /
    • 2012
  • The study applies a hydrologic simulation model, HEC-1 developed by Hydrologic Engineering Center to Daecheong dam watershed for modeling hourly inflows of Daecheong dam. Although the HEC-1 model provides an automatic optimization technique for some of the parameters, the built-in optimization model is not sufficient in estimating reliable parameters. In particular, the optimization model often fails to estimate the parameters when a large number of parameters exist. In this regard, a main objective of this study is to develop Bayesian Markov Chain Monte Carlo simulation based HEC-1 model (BHEC-1). The Clark IUH method for transformation of precipitation excess to runoff and the soil conservation service runoff curve method for abstractions were used in Bayesian Monte Carlo simulation. Simulations of runoff at the Daecheong station in the HEC-1 model under Bayesian optimization scheme allow the posterior probability distributions of the hydrograph thus providing uncertainties in rainfall-runoff process. The proposed model showed a powerful performance in terms of estimating model parameters and deriving full uncertainties so that the model can be applied to various hydrologic problems such as frequency curve derivation, dam risk analysis and climate change study.

Application of Analysis Models on Soil Water Retention Characteristics in Anthropogenic Soil (인위적으로 변경된 토양에서의 수분보유특성 해석 모형의 적용)

  • Hur, Seung-Oh;Jeon, Sang-Ho;Han, Kyung-Hwa;Jo, Hee-Rae;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.823-827
    • /
    • 2010
  • This study was conducted to assess the propriety of models for soil water characteristics estimation in anthropogenic soil through the measurement of soil water content and soil water matric potential. Soil profile was characterized with four different soil layers. Soil texture was loamy sand for the first soil layer (from soil surface to 30 cm soil depth), sand for the second (30~70 cm soil depth) and the third soil layers (70~120 cm soil depth), and sandy loam for the fourth soil layer (120 cm < soil depth). Soil water retention curve (SWRC), the relation between soil water content and soil water matric potential, took a similar trend between different layers except the layer of below 120 cm soil depth. The estimation of SWRC and air entry value was better in van Genuchten model by analytical method than in Brooks-Corey model with power function. Therefore, it could be concluded that van Genuchten model is more desirable than Brook-Corey model for estimating soil water characteristics of anthropogenic soil accumulated with saprolite.

Evaluation of Flood Regulation Service of Urban Ecosystem Using InVEST mode (InVEST 모형을 이용한 도시 생태계의 홍수 조절서비스 평가)

  • Lee, Tae-ho;Cheon, Gum-sung;Kwon, Hyuk-soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.51-64
    • /
    • 2022
  • Along with the urbanization, the risk of urban flooding due to climate change is increasing. Flood regulation, one of the ecosystem services, is implemented in the different level of function of flood risk mitigation by the type of ecosystem such as forests, arable land, wetlands etc. Land use changes due to development pressures have become an important factor in increasing the vulnerability by flash flood. This study has conducted evaluating the urban flood regulation service using InVEST UFRM(Urban Flood Risk Model). As a result of the simulation, the potential water retention by ecosystem type in the event of a flash flood according to RCP 4.5(10 year frequency) scenario was 1,569,611 tons in urbanized/dried areas, 907,706 tons in agricultural areas, 1,496,105 tons in forested areas, 831,705 tons in grasslands, 1,021,742 tons in wetlands, and 206,709 tons in bare areas, the water bodies was estimated to be 38,087 tons. In the case of more severe 100-year rainfall, 1,808,376 tons in urbanized/dried areas, 1,172,505 tons in agricultural areas, 2,076,019 tons in forests, 1,021,742 tons in grasslands, 47,603 tons in wetlands, 238,363 tons in bare lands, and 52,985 tons in water bodies. The potential economic damage from flood runoff(100 years frequency) is 122,512,524 thousand won in residential areas, 512,382,410 thousand won in commercial areas, 50,414,646 thousand won in industrial areas, 2,927,508 thousand won in Infrastructure(road), 8,907 thousand won in agriculture, Total of assuming a runoff of 50 mm(100 year frequency) was estimated at 688,245,997 thousand won. In a conclusion. these results provided an overview of ecosystem functions and services in terms of flood control, and indirectly demonstrated the possibility of using the model as a tool for policy decision-making. Nevertheless, in future research, related issues such as application of models according to various spatial scales, verification of difference in result values due to differences in spatial resolution, improvement of CN(Curved Number) suitable for the research site conditions based on actual data, and development of flood damage factors suitable for domestic condition for the calculation of economic loss.

Categorizing the Landcover Classes of the Satellite Imagery for the Management of the Nonpoint Source Pollutions (비점오염원 수문유출모형에 적용 가능한 위성영상의 토지피복 분류항목 설정)

  • Seo, Dong-Jo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.465-474
    • /
    • 2009
  • To measure the amount of nonpoint source pollution, some efforts are tried to utilize satellite imagery. But, as the factors for water models do not relate with the landcover categories for satellite imagery, satellite imagery are adapted to roughly classified thematic map or used only for the image interpretation. The purpose of this study is to establish the landcover categories of satellite imagery to relate with the water models. To establish the categories of the landcover for the water models, it was investigated to get main factors of water flow models for the nonpoint source pollution and to review the existing study and the classification system. For this result, it was convinced that the basic unit on the nonpoint source pollution, landcover coefficients of SCS Curve Number, the crop factor of Universal Soil Loss Equation, Manning's roughness coefficients are the useful parameters to extract information from the satellite imagery. After the setup the categories for the landcover classification, it was finally defined from the consultation of the water model specialist. Woopo wetland watershed was selected to the study area because it is a representative wetland in Korea and needs the management system for nonpoint source pollution. There were used Landsat ETM Plus and SPOT-5 satellite imagery to assess the result of the image classification.

Determination of Model Parameters of Surface Cover Materials in Evaluation of Sediment Reduction and Its Effects at Watershed Scale using SWAT (토양유실 저감을 위한 지표피복 저감효과 변수 결정 및 SWAT 모형 유역단위 효과 분석)

  • Kum, Donghyuk;Jang, Chun Hwa;Shin, Min Hwan;Choi, Joong-Dae;Kim, Bomchul;Jeong, Gyo-Cheol;Won, Chul Hee;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.923-932
    • /
    • 2012
  • The purpose of this study was to determine parameters of surface cover materials and evaluation the effects on runoff and sediment reductions with rice straw mat with PAM at watershed scale using the SWAT model. In this study, 1) regression equation of CN for rice straw mat + PAM using SCS curve number method was developed, 2) the USLE P factor, being able to reflect simulation of rice straw mat + PAM in the agricultural field, was estimated for various slope scenarios with VFSMOD-w. Then regression equation for CN and USLE P factor were used as input data in the SWAT model. Assuming rice straw mat + PAM is applied to radish and potato fields, occupying 24% of agricultural fields at the study watershed. Result of direct runoff without rice straw mat + PAM was $65,964,368\;m^3,$ with rice straw mat + PAM, direct runoff was $65,637,336\;m^3$, $327,031.8\;m^3$ reductions compared without it. Also, result of sediment without rice straw mat + PAM was 163,531 ton, with rice straw mat + PAM, sediment was 84,779 ton, 78,752 ton reduction compared without it. This analysis showed that about 48% sediment reductions would be expected with rice straw mat + PAM. As shown in this study, rice straw mat + PAM would be used as an efficient site-specific BMPs to reduce runoff and sediment discharge from field.