• 제목/요약/키워드: SCR system

검색결과 377건 처리시간 0.027초

Dynamic Characteristics of a Urea SCR System for NOx Reduction in Diesel Engine

  • Nam, Jeong-Gil;Choi, Jae-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.235-242
    • /
    • 2007
  • This paper discusses dynamic characteristics of a urea-SCR (Selective Catalytic Reduction) system. The urea flow rate to improve NOx conversion efficiency is generally determined by parameters such as catalyst temperature and space velocity. The urea-SCR system was tested in the various engine operating conditions governing the raw NOx emission levels, space velocity. and SCR catalyst temperature. These experiments include cold-transients to determine catalyst light-off temperature and urea flow rate transients. Likewise. ammonia storage dynamics was also investigated. The cold-transient results indicate the light-off temperature of the catalysts used in these experiments was $200-220^{\circ}C$. The ammonia storage and urea flow rate transients all indicate very slow dynamics (on the order of seconds) which presents control challenges for mobile applications. The results presented in this paper should provide an excellent starting point in developing a functional in-vehicle urea-SCR system.

STATIC CHARACTERISTICS OF A UREA-SCR SYSTEM FOR NOx REDUCTION IN DIESEL ENGINES

  • Nam, J.G.
    • International Journal of Automotive Technology
    • /
    • 제8권3호
    • /
    • pp.283-288
    • /
    • 2007
  • This paper presents the static characteristics of a urea-SCR system. The static characterization of the urea-SCR system was generated by sweeping urea flow rates at common engine torque/speed operating points. Several experiments were performed using engine operating points at different raw NOx emission levels, space velocities, and SCR catalyst temperatures. The recorded NOx emissions from the engine exhaust outlet and engine tailpipe are then compared. The urea-SCR static system results indicated that a $50{\sim}60%$ NOx conversion is achievable at most engine operating points using the stoichiometric $NH_3/NOx$ ratio, and a high 98% NOx conversion is possible by exceeding the stoichiometric $NH_3/NOx$ ratio. The effect of the pre-oxidation catalyst volume was also investigated and found to have a profound impact on experimental results, particularly the static NOx conversion.

Sensitivity Study on SCR Design for Spread-Moored FPSO in West Africa

  • Yoo, Kwang-Kyu;Joo, Youngseok
    • 한국해양공학회지
    • /
    • 제31권2호
    • /
    • pp.111-120
    • /
    • 2017
  • It is generally acknowledged that the Steel Catenary Riser (SCR) is the most cost-effective riser type for deep-water offshore fields among various risers, including the SCR, flexible riser, and hybrid riser. However, in West Africa, the SCR type may not be suitable for FPSO systems because the large vertical motion of the floater brings about a considerable riser dynamic response. In this paper, an SCR system is designed for the FPSO in the West African field, where the use of a hybrid riser has been preferred. The proposed SCR configuration fulfills the design criteria of the API, such as the strength check and fatigue life. Moreover, a sensitivity analysis is also carried out to improve the certainty in the SCR design of a deep-water FPSO. The parameters affecting the strength and fatigue performance of the SCR are considered.

Low Temperature Performance and Compressive Strength Characteristics of an Extruded Homogeneous SCR

  • Seo, Choong-Kil;Oh, Kwang-Chul;Kim, Shin-Han
    • 동력기계공학회지
    • /
    • 제19권4호
    • /
    • pp.30-35
    • /
    • 2015
  • The purpose of this study is to identify the low temperature performance and strength characteristics of V-based extruded homogeneous SCR. The extruded catalyst and the coated catalyst showed 50% and 27% of NOx conversion performance respectively at about $210^{\circ}C$ of catalyst temperature, so the extruded SCR was higher in de-NOx performance than the coated SCR especially at a low temperature zone. The compressive strength of the Enhanced Extrusion #1, in which the content of promoters such as silica, clay, glass fiber and binder was optimized, was a 120% improvement compared to the Extrusion#1 catalyst, higher than the coated SCR.

ARIMA를 활용한 실시간 SCR-HP 밸브 온도 수집 및 고장 예측 (Real-time SCR-HP(Selective catalytic reduction - high pressure) valve temperature collection and failure prediction using ARIMA)

  • 이수환;홍현지;박지수;염은섭
    • 한국가시화정보학회지
    • /
    • 제19권1호
    • /
    • pp.62-67
    • /
    • 2021
  • Selective catalytic reduction(SCR) is an exhaust gas reduction device to remove nitro oxides (NOx). SCR operation of ship can be controlled through valves for minimizing economic loss from SCR. Valve in SCR-high pressure (HP) system is directly connected to engine exhaust and operates in high temperature and high pressure. Long-term thermal deformation induced by engine heat weakens the sealing of the valve, which can lead to unexpected failures during ship sailing. In order to prevent the unexpected failures due to long-term valve thermal deformation, a failure prediction system using autoregressive integrated moving average (ARIMA) was proposed. Based on the heating experiment, virtual data mimicking temperature range around the SCR-HP valve were produced. By detecting abnormal temperature rise and fall based on the short-term ARIMA prediction, an algorithm determines whether present temperature data is required for failure prediction. The signal processed by the data collection algorithm was interpolated for the failure prediction. By comparing mean average error (MAE) and root mean square error (RMSE), ARIMA model and suitable prediction instant were determined.

디젤엔진의 후처리장치로서 PCD 플라즈마 시스템에 관한 연구 (A Study on the PCD Plasma System as an After Treatment Apparatus in Diesel Engine)

  • 유경현
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.70-77
    • /
    • 2012
  • The selective catalytic reduction(SCR) system used to reduce NOx in diesel engines requires an NO/$NO_2$ ratio of about 1 in exhaust emissions to realize the fast SCR mode at temperatures lower than $300^{\circ}C$. This study investigated the characteristics of a plasma system as a pre-active apparatus for the fast SCR reaction mode of an SCR system. Plasma was generated by the pulse corona discharge(PCD) method with a four-channel wire-cylinder reactor. This study showed that plasma was easily generated in the exhaust gas by the PCD system, and the peak voltage of the normal state condition for plasma generation was generally 12 kV. The PCD system easily converted NO into $NO_2$ at lower temperatures and the NO/$NO_2$ conversion ratio increased with the discharge current for plasma generation. But the PCD system could not convert NO into $NO_2$ at higher engine speeds and higher engine loads due to the lack of oxygen in exhaust gas. The PCD system also activated the diesel oxidation catalysts(DOC) system to reduce CO emissions.

디지털 원자로 보호 시스템을 위한 정형 소프트웨어 요구사항 명세 (Formal Software Requirements Specification for Digital Reactor Protection Systems)

  • 유준범;차성덕;김창회;오윤주
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권6호
    • /
    • pp.750-759
    • /
    • 2004
  • 원자력 발전소의 디지털 제어 시스템에 적용되는 소프트웨어는 안전성이 중요시되는 safety-critical 소프트웨어로, 충분한 수준의 안전성을 보장하기 위해서 여러 기법들이 적용되고 있다. 특히, 정형명세 기법은 개발의 초기 단계에서 소프트웨어 요구 사항들을 명확하고 완전하게 명세 하도록 유도함으로써 안전성을 크게 향상시킬 수 있는 기법으로 인정받고 있다. 본 논문에서는 원자력 발전소 디지털 제어 시스템 소프트웨어의 요구 사항 명세에 적합하도록 개발된 정형명세 기법인 NuSCR을 논의한다. 또한, 개발된 NuSCR의 적용성을 검토하기 위해, 현재 KNICS 사업단에서 개발중인 발전소보호계통 소프트웨어의 요구사항을 정형 명세 한 경험을 소개하고 있다. 또한, 원자력 도매인에 특화된 정형명세 기법인 NuSCR의 우수성도 실례를 들어 설명하고 있다.

$NH_3$-SCR 반응기 내에서의 $NH_3$/NOx 및 SCR 촉매 온도가 DeNOx 성능에 미치는 영향 (Effect of $NH_3$/NOx ratio and Catalyst Temperature on DeNOx Performance in the $NH_3$-SCR reactor)

  • 홍길화;공호정;황인구;박심수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3096-3101
    • /
    • 2008
  • Selective Catalytic Reduction (SCR) technology is well-known to be effective for the reduction of NOx emission. So car manufacturers has adopted Ures-SCR system to be satisfied with emission regulation. This paper discusses the effective of $NH_3/NOx$ ratio and SCR catalyst temperature in the $NH_3$-SCR reactor on DeNOx performance. So it is shown the characteristic of NOx conversion and ammonia slip using the $NH_3$ instead of Urea-Solution. From the result of this study, it is found to optimize $NH_3/NOx$ ratio to have the best case of high NOx conversion and low ammonia slip at variable SCR catalyst temperatures. Lastly, it is also found the characteristics of NOx conversion and ammonia slip with compared with Urea.

  • PDF

중형 운행 경유차용 Urea-SCR 시스템의 아랫첨자 $NO_X$ 저감성능에 미치는 영향인자 (Influential Factors for NO_X Reduction Performance of Urea-SCR System for an In-use Medium Duty Diesel Engine)

  • 김홍석;정용일;송명호;이성욱;박현대;황재원
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.154-161
    • /
    • 2009
  • This study is a part of project of urea-SCR system development for an in-use medium duty diesel engine. This study shows the effect of ammonia oxidation catalyst and SCR volume on $NO_X$ reduction performance. When AOC(Ammonia Oxidation Catalyst) is not used, the urea injection should be controlled accurately to prevent $NH_3$ slip. However, it is found that the accurate $NH_3$ slip control is not easy without AOC in real engine operating conditions, because $NH_3$ and $NO_X$ reaction characteristics change with many factors such as exhaust gas temperature and $NH_3$ absorbance on SCR. SCR volume is also one of important design parameters. This study shows that $NO_X$ reduction efficiency increases with increase of SCR volume especially at high space velocity and low exhaust gas temperature conditions. Additionally, this paper shows the emissions of EURO-2 medium duty diesel engine can be improved to the level of EURO-5 with a DPF and urea-SCR system.

박용 탈질 시스템의 혼합기 적용에 따른 요소수용액 분무 및 혼합특성 수치적 연구 (Numerical Study on Urea Spraying and Mixing Characteristics with Application of Static Mixer in Marine SCR System)

  • 장재환;박현철
    • 대한기계학회논문집B
    • /
    • 제40권7호
    • /
    • pp.429-434
    • /
    • 2016
  • 중대형 출력의 해상용 디젤엔진에서 여러 탈질 기술 중 요소(Urea)를 환원제로 사용하는 Urea-SCR 시스템이 가장 검증된 기술로 알려져 있다. 요소수의 경우 Urea-SCR 시스템의 노즐 특성 및 혼합기 유 무에 의한 분무거동 및 혼합특성이 시스템 효율에 지대한 영향을 미친다. 따라서 본 연구는 SCR 시스템의 최적 설계를 위해 혼합기 적용에 따른 반응영역에서의 분무거동 특성 및 암모니아 균일도를 전산해석기법으로 분석하였다. 그 결과 혼합구간의 $NH_3$농도로 비춰 볼 때 SCR 시스템의 성능 향상을 보장하기 위해서는 환원제의 균일도를 고려한 특정 형상의 혼합기의 적용이 필요하다는 것을 알 수 있었다. 특히 선박용 SCR 시스템은 설치 공간 제약에 따라 혼합구간 단축을 위해 혼합기 적용은 필수적임을 알 수 있었다.