• Title/Summary/Keyword: SCR De-NOx(NOx Reduction of SCR)

Search Result 72, Processing Time 0.024 seconds

Numerical Investigation of the Spray Behavior and Flow Characteristics of Urea-Water Solution Injected into Diesel Exhaust Pipe (디젤 배기관에 분사된 우레아 수용액의 분무 거동 및 유동 특성에 관한 연구)

  • An, Tae Hyun;Kim, Man Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.41-48
    • /
    • 2014
  • A urea-SCR system suffers from some issues associated with the ammonia slip phenomenon, which mainly occurs because of the shortage of evaporation and thermolysis time, and this makes it difficult to achieve an uniform distribution of injected urea. A numerical study was therefore performed by changing such various parameters as installed injector angle and application and angle of mixer to enhance evaporation and the mixing of urea water solution with exhaust gases. As a result, various parameters were found to affect the evaporation and mixing characteristics between exhaust gas and urea water solution, and their optimization is required. Finally, useful guidelines were suggested to achieve the optimum design of a urea-SCR injection system for improving the DeNOx performance and reducing ammonia slip.

Characteristics of Low Temperature De-NOx Process with Non-thermal Plasma and NH3 Selective Catalytic Reduction (II) (저온 플라즈마 및 암모니아 선택적 환원공정을 활용한 저온 탈질공정의 특성(II))

  • Lee, Jae-Ok;Song, Young-Hoon
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.414-419
    • /
    • 2006
  • Effects of water vapor, hydrocarbons, and CO, which are inevitably included in exhaust gases of combustion, on a combined $De-NO_{x}$ process of non-thermal plasma and $NH_{3}$ SCR (Selective Catalytic Reduction) have been investigated. Test results showed that fast SCR reaction enhanced $De-NO_{x}$ rate under the low temperature conditions, $150{\sim}200^{\circ}C$ The present test, however, showed that the role of the fast SCR reaction can be significantly suppressed by addition of hydrocarbons in a non-thermal plasma reactor. Detailed investigation verified that such suppressed role of the fast SCR reaction could be caused by the $NO_{2}/NO_{x}$ ratio modified by aldehydes produced from hydrocarbons in a non-thermal plasma reactor. In addition, the present study was confirmed that the effects of water vapor and CO were not noticeable compared with the hydrocarbon effects.

A Study on NOx Reduction Efficiency according to Various Injectors used for De-NOx System (흡장형 De-NOx 촉매(LNT) 시스템의 환원제 분무용 인젝터 종류에 따른 NOx저감효율 연구)

  • Han, Young-Deok;Oh, Jung-Mo;Lee, Ki-Hyung;Lee, Jin-Ha;Mun, Woong-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.117-124
    • /
    • 2011
  • Automotive engines require strategies to fulfill the emission regulations in terms of NOx and PM. A dramatic reduction in NOx and PM emissions could be achieved with high pressure injection, innovative combustion strategies and EGR. Recently, Lean NOx Trap (LNT) and Urea-SCR are considered as more practical strategy to suppress the engine-out emissions substantially for copying with severe regulation. These systems need to reduce the reducing agent injection system which has a huge impact on NOx purification efficiency. In this paper, different three injectors have been used to investigate spray characteristics and engine emission test was conducted to clarify the effect of these injectors on the NOx reduction.

Numerical Study on the Injector Shape and Location of Urea-SCR System of Heavy-duty Diesel Engine for Preventing $NH_3$ Slip (대형 디젤엔진용 SCR 시스템의 암모니아 슬립 억제를 위한 인젝터의 형상 및 위치에 관한 수치적 연구)

  • Jeong Soo-Jin;Lee Sang Jin;Kim Woo-Seung;Lee Chun Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.68-78
    • /
    • 2006
  • In the past few years, considerable efforts have been directed towards the further development of Urea-SCR(selective catalytic reduction) technique for diesel-driven vehicle. Although urea possesses considerable advantages over Ammonia$(NH_3)$ in terms of toxicity and handling, its necessary decomposition into Ammonia and carbon dioxide complicates the DeNOx process. Moreover, a mobile SCR system has only a short distance between engine exhaust and the catalyst entrance. Hence, this leads to not enough residence times of urea, and therefore evaporation and thermolysis cannot be completed at the catalyst entrance. This may cause high secondary emissions of Ammonia and isocyanic acid from the reducing agent and also leads to the fact that a considerable section of the catalyst may be misused for the purely thermal steps of water evaporation and thermolysis of urea. Hence the key factor to implementation of SCR technology on automobile is fast thermolysis, good mixing of Ammonia and gas, and reducing Ammonia slip. In this context, this study performs three-dimensional numerical simulation of urea injection of heavy-duty diesel engine under various injection pressure, injector locations and number of injector hole. This study employs Eulerian-Lagrangian approach to consider break-up, evaporation and heat and mass-transfer between droplet and exhaust gas with considering thermolysis and the turbulence dispersion effect of droplet. The SCR-monolith brick has been treated as porous medium. The effect of location and number of hole of urea injector on the uniformity of Ammonia concentration distribution and the amount of water at the entrance of SCR-monolith has been examined in detail under various injection pressures. The present results show useful guidelines for the optimum design of urea injector for reducing Ammonia slip and improving DeNOx performance.

An Experimental Study of Nano PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System to Meet EURO-IV (상용디젤엔진의 EURO-IV 배기규제 대응을 위한 Urea-SCR 시스템의 나노입자 배출특성에 관한 실험적 연구)

  • Lee, Chun-Hwan;Cho, Taik-Dong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.128-136
    • /
    • 2007
  • It is well known that two representative methods satisfy EURO-IV regulation from EURO-III. The first method is to achieve the regulation through the reduction of NOx in an engine by utilizing relatively high EGR rate and the elimination of subsequently increased PM by DPF. However, it results in the deterioration of fuel economy due to relatively high EGR rate. The second is to use the high combustion strategy to reduce PM emission by high oxidation rate and trap the high NOx emissions with DeNOx catalysts such as Urea-SCR. While it has good fuel economy relative to the first method mentioned above, its infrastructure is demanded. In this paper, the number distribution of nano PM has been evaluated by Electrical Low Pressure Impactor(ELPI) and CPC in case of Urea-SCR system in second method. From the results, the particle number was increased slightly in proportion to the amount of urea injection on Fine Particle Region, whether AOC is used or not. Especially, in case of different urea injection pressure, the trends of increasing was distinguished from low and high injection pressure. As low injection pressure, the particle number was increased largely in accordance with the amount of injected urea solution on Fine Particle Region. But Nano Particle Region was not. The other side, in case of high pressure, increasing rate of particle number was larger than low pressure injection on Nano Particle Region. From the results, the reason of particle number increase due to urea injection is supposed that new products are composited from HCNO, sulfate, NH3 on urea decomposition process.

K and Cs Doped Ag/Al2O3 Catalyst for Selective Catalytic Reduction of NOx by Methane

  • Rao, Komateedi N.;Yu, Chang-Yong;Lack, Choi-Hee;Ha, Heon-Phil
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.510-516
    • /
    • 2011
  • In the present study, potassium and caesium doped Ag/$Al_2O_3$ catalysts were synthesized by simple wet impregnation method and evaluated for selective catalytic reduction (SCR) of NOx using methane. TEM analysis and diffraction patterns demonstrated the finely dispersed Ag particles. BET surface measurements reveal that the prepared materials have moderate to high surface area and the metal amount found from ICP analysis was well matching with the theoretical loadings. The synthesized K-Ag/$Al_2O_3$ and Cs-Ag/$Al_2O_3$ catalysts exhibited a promotional effect on deNOx activity in the presence of $SO_2$ and $H_2O$. The long-term isothermal studies at $550^{\circ}C$ under oxygen rich condition showed the superior catalytic properties of the both alkali promoted samples. The crucial catalytic properties of materials are attributed to NO adsorption properties detected by the NO TPD.

A Comparative Study on the NOx Removal Activities of Metal-ion-exchanged Mg/Cu-ZSM-5 Catalysts in the Treatment of Flue Gas from Stationary Sources (금속이온교환된 Mg/Cu-ZSM-5 촉매를 사용한 배연 탈질 공정에서 De-NOx활성 비교연구)

  • 김재천;이병용;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.421-428
    • /
    • 1996
  • In this study, in order to make up its draw-back in Cu-ZSM-5 catalytic system, some of transition metals or alkaline earth metals were cocation-exchanged in Cu-ZSM-5. Among various cocation-ion-exchanged ZSM-5 catalysts, Mg/Cu-ZSM-5 has been found the most active and durable in NOx reduction even at high oxygen content as well as at the presence of water vapor. The role of Mg in ZSM-5 is supposed to prevent the dealumination of aluminum ions in super-cage even at harsh hydro-thermal conditions, and also it seems to stabilize the Cu ions in the structure. In order to prepare commercially available catalysts, Mg/Cu-ZSM-5 catalysts were wash-coated on the surface of honeycomb type monolith, and tested in terms of catalytic activities. As a result, it was found that the catalyst prepared bt the wash-coating showed satisfactorily high NOx conversion for the practical use in SCR process.

  • PDF

The Effects of SO2 and NH3 on the N2O Reduction with CO over MMO Catalyst (MMO 촉매와 CO 환원제에 의한 N2O 분해에서 SO2 및 NH3 영향 연구)

  • Chang, Kil Sang;You, Kyung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.653-657
    • /
    • 2009
  • Nitrous oxide is a typical greenhouse gas which is produced from various organic or fossil fuel combustion processes as well as chemicals producing plants. $N_2O$ has a global worming potential of 310 times that of $CO_2$ on per molecule basis, and also acts as an ozone depleting material in the stratosphere. However, its removal is not easy for its chemical stability characteristics. Most SCR processes with several effective reducing agents generally require the operation temperature higher than $450^{\circ}C$, and the catalytic conversion becomes decreased significantly when NOx is present in the stream. Present experiments have been performed to obtain basic design data of actual application concerning the effects of $SO_2$ and $NH_3$ on the interim and long term activities of $N_2O$ reduction with CO over the mixed metal oxide (MMO) catalyst derived from a hydrotalcite-like compound precursor. The MMO catalysts used in the experiments, have shown prominent activities displaying full conversions of $N_2O$ near $200^{\circ}C$ when CO is introduced. The presence of $SO_2$ is considered to show no critical behavior as can be met in the $NH_3$ SCR DeNOx systems and the effect of $NH_3$ is considered to play as mere an impurity to share the active sites of the catalysts.

Spray Behavior Characteristics of Injector Used for HC-DeNOx Catalyst System in the Transparent Exhaust Manifold (모사 배기관 내 HC-DeNOx 촉매용 인젝터의 분무 거동 특성)

  • Lee, Dong-Hoon;Oh, Jung-Mo;Jeong, Hae-Young;Lee, Ki-Hyung;Yeo, Kwon-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.54-60
    • /
    • 2007
  • A new method that optimizes a control of hydrocarbon (HC) addition to diesel exhaust gas for HC type DeNOx catalyst system has been developed. These catalysts are called as the HC-DeNOx catalyst in this paper. The system using HC-DeNOx catalyst requires a resonable quantity of hydrocarbons addition in the inlet gas of the catalyst, because the HC concentration in a diesel engine is so low that the HC is not sufficient for NOx conversion. Generally ambient temperature in the exhaust manifold is $250{\sim}350^{\circ}C$, so spray behavior in this case is different from that of any other condions. This research shows spray behavior of injected hydrocarbons in the transparent exhaust manifold.

A Study for SCR Catalyst Reduction in Fast SCR Using Oxidation Catalyst (산화촉매를 이용한 Fast SCR에서의 SCR 촉매 저감 연구)

  • Lee, Jae Ok;Lee, Dae Hoon;Song, Young-Hoon;Oh, Dong-Kyu;Seo, Jung-Wook
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.333-336
    • /
    • 2013
  • Experimental investigation to estimate the feasibility of fast selective catalytic reduction (SCR) or oxidation catalyst combined ammonia SCR system to abate NOx in low temperature condition ($150{\sim}250^{\circ}C$) is reported. Because the conversion of NO to $NO_2$ is pre-requisite of the fast SCR process, the effect of the amount of oxidation catalyst to NO conversion to $NO_2$ was tested. 37, 45 and 51% of conversion rates were obtained for the OCV of 563000, 375000 and 281000 h, respectively. $De-NO_x$ performance in the case of $NO_2/NO_x$ ratio of 45% showed the best result in all tested temperature conditions. Comparison of the fast SCR and standard SCR with the condition of $NO_2/NO_x$ ratio of 45%, $200{\sim}250^{\circ}C$ and space velocity of 10000~30000 h showed that the fast SCR does not show much difference according to the variance of space velocity. Also it was shown that using the fast SCR, the volume of SCR catalyst can be reduced less than half of the standard SCR condition by increasing space velocity without the loss of $De-NO_x$ performance.