• Title/Summary/Keyword: SC structures

Search Result 162, Processing Time 0.024 seconds

Experimental Investigation of the Lateral Load Capacity and Strength Characteristics of a Steel Plate Concrete (SC) Shear Wall (비보강 강판콘크리트 전단벽의 횡하중 성능 및 강도특성에 대한 실험적 평가)

  • Cho, Sung-Gook;So, Gi-Hwan;Kim, Doo-Kie;Kwon, Min-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.23-32
    • /
    • 2012
  • Research on steel plate concrete (SC) structures for the modularization of nuclear power plants have been performed recently in Korea. In this study, the seismic capacity and stiffness characteristics of unstiffened SC shear walls under the effects of earthquakes were investigated through static pushover tests. Failure modes, sectional strength, and stiffness characteristics of SC structures under lateral loads were inspected by analyzing the experimental results. The strengths obtained by the experiments were also compared with those derived by the design code of the SC structures. One of the main failures of unstiffened SC shear walls was found to be the type of bending shear failure due to the debonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC structures.

Damping Ratios for Seismic Design of SC Structures (SC구조의 내진설계를 위한 감쇠비)

  • Lee, Seung-Joon;Kim, Won-Ki
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.487-496
    • /
    • 2010
  • The structural damping ratios for seismic design of nuclear power plant structures are specified in Regulatory guide 1.61 of the United States NRC for RC structures of 4%(OBE) and 7%(SSE), and for steel structures of 3%(OBE) and 4%(SSE), but not for steel-plate concrete (SC) structures that have been developed recently. The objective of this study is to investigate the damping ratios of SC structures by identifying the relative differences in the damping ratios between RC and SC structures. An experimental study was performed on four specimens, RC-S, RC-M, SC-S and SC-M, where S stands for shear-governed and M for moment-governed. The conducted method was free vibration testing by rupturing a brittle steel plate that linked the actuator and the mass center. The test results were analyzed to determine fundamental frequencies and damping ratios at various load levels. By examining the relative differences in damping ratios of four specimens, it is proposed for SC structures to use the same damping ratio of 4% as RC one at OBE, but 1% less damping ratio than RC one resulting in 6% at SSE.

Flexural Strength Evaluation of Steel Plate Concrete Shear wall subject to Monotonic Loading (단조하중을 받는 SC 전단벽의 휨강도 평가)

  • Kwon, Min-Ho;Kim, Jin-Sup;Seo, Hyun-Su;Lim, Jeong-Hee
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.9-14
    • /
    • 2013
  • In this study, flexural strength properties of SC shear walls were investigated through static pushover test. Failure modes and stiffness characteristics of SC shear walls under lateral loads were inspected by analyzing the experimental results. Main failures of unstiffened SC shear walls were found to be the type of bending shear failure due to the unbonding of the steel plate at the concrete interface. The ductility capacity of SC structures was also confirmed to be improved, which is considered to be a confining effect on steel plates in the longitudinal behavior of SC shear walls.

Probabilistic seismic demand assessment of self-centering concrete frames under mainshock-aftershock excitations

  • Song, Long L.;Guo, Tong;Shi, Xin
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.641-652
    • /
    • 2019
  • This paper investigates the effect of aftershocks on the seismic performance of self-centering (SC) prestressed concrete frames using the probabilistic seismic demand analysis methodology. For this purpose, a 4-story SC concrete frame and a conventional reinforced concrete (RC) frame are designed and numerically analyzed through nonlinear dynamic analyses based on a set of as-recorded mainshock-aftershock seismic sequences. The peak and residual story drifts are selected as the demand parameters. The probabilistic seismic demand models of the SC and RC frames are compared, and the SC frame is found to have less dispersion of peak and residual story drifts. The results of drift demand hazard analyses reveal that the SC frame experiences lower peak story drift hazards and significantly reduced residual story drift hazards than the RC frame when subjected to the mainshocks only or the mainshock-aftershock sequences, which demonstrates the advantages of the SC frame over the RC frame. For both the SC and RC frames, the influence of as-recorded aftershocks on the drift demand hazards is small. It is shown that artificial aftershocks can produce notably increased drift demand hazards of the RC frame, while the incremental effect of artificial aftershocks on the drift demand hazards of the SC frame is much smaller. It is also found that aftershock polarity does not influence the drift demand hazards of both the SC and RC frames.

Compression Behavior of Steel Plate-Concrete Structures with the Width-to-Thickness Ratio (폭두께비에 따른 강판콘크리트구조의 압축거동)

  • Han, Hong-Soo;Choi, Byong-Jeong;Han, Kweon-Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.229-236
    • /
    • 2011
  • This study was conducted to understand the characteristics of the compression behavior of steel plate-concrete(SC) structures with a width-to-thickness ratio under axial loading. SC structures are structural systems where concrete is poured into steel plates to which headed stud bolts had been attached inside. The specimens were classified according to the two width-to-thickness (W/T) ratios of 1.60 and 3.56. Through these experiments, the following conclusions could be arrived at. The fracture pattern of the specimens showed that steel plate buckling occurred between the stud lines, and that a crack occurred at the concrete spalling from the sides of the concrete before the system reached the maximum compressive strength. The maximum compressive strength of the specimens was larger than that of the existing equations (AISC 2005, ACI 318-05, and KBC 2005). With the increased W/T ratio of the specimens, the strength of the concrete core was decreased to account for the confinement effects from the steel plates.

New insights in piezoelectric free-vibrations using simplified modeling and analyses

  • Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.591-612
    • /
    • 2009
  • New insights are presented in simplified modeling and analysis of free vibrations of piezoelectric - based smart structures and systems. These consist, first, in extending the wide used piezoelectric-thermal analogy (TA) simplified modeling approach in currently static actuation to piezoelectric free-vibrations under short-circuit (SC) and approximate open-circuit (OC) electric conditions; second, the popular piezoelectric strain induced - potential (IP) simplified modeling concept is revisited. It is shown that the IP resulting frequencies are insensitive to the electric SC/OC conditions; in particular, SC frequencies are found to be the same as those resulting from the newly proposed OC TA. Two-dimensional plane strain (PStrain) and plane stress (PStress) free-vibrations problems are then analyzed for above used SC and approximate OC electric conditions. It is shown theoretically and validated numerically that, for both SC and OC electric conditions, PStress frequencies are lower than PStrain ones, and that 3D frequencies are bounded from below by the former and from above by the latter. The same holds for the modal electro-mechanical coupling coefficient that is retained as a comparator of presented models and analyses.

The effects of the ISOTC108SC5 on the Korean industry (국제표준화(ISOTC108SC5 분야)가 국내산업에 미치는 영향)

  • Choi, Byoung-Nam
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.544-547
    • /
    • 2009
  • Standardization in the fields of mechanical vibration and shock and the effects of vibration and shock on humans, machines, vehicles (air, sea, land and rail) and stationary structures, and of the condition monitoring of machines and structures, using multidisciplinary approaches.

  • PDF

Standard Activity of ISO TC 108/SC 2 (measurement and evaluation of mechanical vibration and shock as applied machines, vehicles and structures) (ISO TC 108/SC2(기계.차량.구조물의 기계적 진동.충격의 측정 및 평가) 규격 제정 동향)

  • Park, Jong-Po
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.285-288
    • /
    • 2002
  • In this paper, standardization activities and trends of ISO TC 108/SC 2 (measurement and evaluation of mechanical vibration and shock as applied machines, vehicles and structures) are reviewed.

  • PDF

Standardization Activity of ISO TC 108/ SC2 (Measurement and evaluation of mechanical vibration and shock as applied machines, vehicles and structures) (ISO TC 108/SC 2 (기계. 차량. 구조물의 기계적 진동-충격의 측정 및 평가) 규격 제정 동향)

  • Park, Jong-Po
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.333.2-333
    • /
    • 2002
  • In this paper, standardization activities and trends of ISO TC 108/SC 2(Measurement and evaluation of mechanical vibration and shock as applied to machines, vehicles and structures) are reviewed.

  • PDF

Evaluation of Structural Capacity of SC Walls in Nuclear Power Plant accounting for the Area Lost to Openings (개구 저감률에 의한 원전 SC벽체의 내력 평가)

  • Chung, Chul-Hun;Jung, Raeyoung;Moon, Il Hwan;Lee, Jungwhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2181-2193
    • /
    • 2013
  • The shear wall with openings built with reinforced concrete(RC) have been elaborately studied by many researchers, whereas the steel plate concrete(SC) wall structure has not been investigated as much. Recent SC wall structures developed in Korea have been partly applied to nuclear power plant structures, although its design specification or guideline for the SC wall structure with openings has not been completed yet. This study based on the account for the area lost to openings evaluates the effects of opening on the structural capacity of the SC structure within nuclear power plant. The results obtained from the study on the area lost to openings have been compared with experimental and numerical studies.