• Title/Summary/Keyword: SC algorithm

Search Result 288, Processing Time 0.03 seconds

QoE-driven Joint Resource Allocation and User-paring in Virtual MIMO SC-FDMA Systems

  • Hu, YaHui;Ci, Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.10
    • /
    • pp.3831-3851
    • /
    • 2015
  • This paper is concerned with the problem of joint resource allocation and user-pairing in virtual MIMO SC-FDMA systems to improve service quality of experience (QoE). No-reference logarithmic model is introduced to quantify service experience for each user and the objective is to maximize sum of all user's mean of score (MOS). We firstly formulate the optimal problem into an S-dimensional (S-D) assignment problem. Then, to solve this problem, the modified Lagrangian relaxation algorithm is deduced to obtain the suboptimal result of joint user-paring and subchannel allocation. The merits of this solution are as follows. First, the gap between its results and the global optimal one can be quantified and controlled by balancing the complexity and accuracy, which merit the other suboptimal algorithms do not have. Secondly, it has the polynomial computational complexity and the worst case complexity is O(3LN3), where L is the maximum iteration time and N is the number of subchannels. Simulations also prove that our proposed algorithm can effectively improve quality of experience and the gap between our proposed and the optimal algorithms can be controlled below 8%.

Scheduling for Virtual MIMO in Single Carrier FDMA (SC-FDMA) System

  • Kim, Jinwoo;Hwang, In Seok;Kang, Chung Gu
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.27-33
    • /
    • 2015
  • In this paper, we consider a joint frequency-domain scheduling and user-pairing problem for virtual MIMO in the single carrier frequency division multiple access (SC-FDMA) system, e.g., the uplink transmission for third generation partnership project-long term evolution (3GPP-LTE) standard. Due to the subcarrier adjacency constraint inherent to SC-FDMA, its complexity becomes unmanageable. We propose a greedy heuristic algorithm for PF scheduling so as to deal with the complexity issue in this joint problem. It has been shown that its performance can reach up to 90% of its upper bound.

A New Adaptive, Semantically Clustered Peer-to-Peer Network Architecture

  • Das S;Thakur A;Bose T;Chaki N
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.159-164
    • /
    • 2004
  • This paper aims towards designing and implementation of a new adaptive Peer to Peer (P2P) network that cluster itself on the basis of semantic proximity. We also developed an algorithm to classify the nodes to form the semantic groups and to direct the queries to appropriate groups without any human intervention. This is done using Bloom filters to summarise keywords of the documents shared by a peer. The queries are directed towards the appropriate clusters instead of flooding them. The proposed topology supports a system for maintaining a global, omnipresent trust value for each peer in an efficient manner both in terms of decision time and network load.

  • PDF

A Study on Radio Resource Management for Multi-cell SC-FDMA Systems (다중셀 SC-FDMA를 위한 무선자원 관리기법에 관한연구)

  • Chung, Yong-Joo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.4
    • /
    • pp.7-15
    • /
    • 2010
  • This study proposes a rad o resource management scheme to maximize the performance of the LTE(Long Term Evolution) uplink, using SC-FDMA(Single Carrier-Frequency Division Multiple Access). Rather than the single-cell SC-FDMA system the existing studies are mainly concerning, this study focuses on multi-cell system which needs considering the interaction among cells. Radio resource management is divided into two phases, planning and operation phases. The former is for the master eNB(e-NodeB) to allocate RBs(radio bearer) to eNB, the latter for eNB to assign RBs to the mobiles in the cell. For each phase, an optimization model and greedy algorithm are proposed. Optimization models aim to maximize the system performance while satisfying the constraints for both QoS and RB continuity. The greedy algorithms, like generic ones, move from a solution to a neighboring one having the best objective value among neighboring ones. From the numerous numerical experiments, the performance and characteristics of the algorithms are analyzed. This study is expected to play a volunteering role in radio resource management for the multi-cell SC-FDMA system.

Frequency Domain Channel Estimation for MIMO SC-FDMA Systems with CDM Pilots

  • Kim, Hyun-Myung;Kim, Dongsik;Kim, Tae-Kyoung;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.447-457
    • /
    • 2014
  • In this paper, we investigate the frequency domain channel estimation for multiple-input multiple-output (MIMO) single-carrier frequency-division multiple-access (SC-FDMA) systems. In MIMO SC-FDMA, code-division multiplexed (CDM) pilots such as cyclic-shifted Zadoff-Chu sequences have been adopted for channel estimation. However, most frequency domain channel estimation schemes were developed based on frequency-division multiplexing of pilots. We first develop a channel estimation error model by using CDM pilots, and then analyze the mean-square error (MSE) of various minimum MSE (MMSE) frequency domain channel estimation techniques. We show that the cascaded one-dimensional robust MMSE (C1D-RMMSE) technique is complexity-efficient, but it suffers from performance degradation due to the channel correlation mismatch when compared to the two-dimensional MMSE (2D-MMSE) technique. To improve the performance of C1D-RMMSE, we design a robust iterative channel estimation (RITCE) with a frequency replacement (FR) algorithm. After deriving the MSE of iterative channel estimation, we optimize the FR algorithm in terms of the MSE. Then, a low-complexity adaptation method is proposed for practical MIMO SC-FDMA systems, wherein FR is performed according to the reliability of the data estimates. Simulation results show that the proposed RITCE technique effectively improves the performance of C1D-RMMSE, thus providing a better performance-complexity tradeoff than 2D-MMSE.

A Study on the Development of Arc Length Estimation Method in FCAW (FCAW에서의 아크 길이 추정 방법 개발에 관한 연구)

  • Bae, Kwang-Moo;Cho, Sang-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.67-72
    • /
    • 2009
  • The flux cored arc welding (FCAW) process is one of the most frequently employed and important welding process due to high productivity and excellent workability. The process is performed either as an automated process or as a semi-automatic process. In FCAW process, welding voltage has been considered as a qualitative indication of arc length. But it is necessary to let welding operators know, maintain and manage the arc length directly by estimating and displaying it. In this study, to develop arc length estimation technique, we measured a welding circuit resistance($R_sc$) and then we calculated welding circuit voltage drop($V_sc$). Also, we measured arc peak voltage($V_ap$). By subtracting $V_sc$ from $V_arc$, we can easily calculate net arc voltage drop($V_arc$). Consequently, we suggested arc length estimating equation and basic algorithm by regressive analyzing the relationship between net arc voltage drop($V_arc$) and real arc length(Larc) measured by high speed camera. Therefore, arc length can be predicted by just monitoring welding current and voltage.

Multiple Node Flip Fast-SSC Decoding Algorithm for Polar Codes Based on Node Reliability

  • Rui, Guo;Pei, Yang;Na, Ying;Lixin, Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.658-675
    • /
    • 2022
  • This paper presents a fast-simplified successive cancellation (SC) flipping (Fast-SSC-Flip) decoding algorithm for polar code. Firstly, by researching the probability distribution of the number of error bits in a node caused by channel noise in simplified-SC (SSC) decoder, a measurement criterion of node reliability is proposed. Under the guidance of the criterion, the most unreliable nodes are firstly located, then the unreliable bits are selected for flipping, so as to realize Fast-SSC-Flip decoding algorithm based on node reliability (NR-Fast-SSC-Flip). Secondly, we extended the proposed NR-Fast-SSC-Flip to multiple node (NR-Fast-SSC-Flip-ω) by considering dynamic update to measure node reliability, where ω is the order of flip-nodes set. The extended algorithm can correct the error bits in multiple nodes, and get good performance at medium and high signal-to-noise (SNR) region. Simulation results show that the proposed NR-Fast-SSC-Flip decoder can obtain 0.27dB and 0.17dB gains, respectively, compared with the traditional Fast-SSC-Flip [14] and the newly proposed two-bit-flipping Fast-SSC (Fast-SSC-2Flip-E2) [18] under the same conditions. Compared with the newly proposed partitioned Fast-SSC-Flip (PA-Fast-SSC-Flip) (s=4) [18], the proposed NR-Fast-SSC-Flip-ω (ω=2) decoder can obtain about 0.21dB gain, and the FER performance exceeds the cyclic-redundancy-check (CRC) aided SC-list (CRC-SCL) decoder (L=4).

A New Physical Layer Transmission Scheme for LPI and High Throughput in the Cooperative SC-FDMA System

  • Li, Yingshan;Wu, Chao;Sun, Dongyan;Xia, Junli;Ryu, Heung-Gyoon
    • Journal of Communications and Networks
    • /
    • v.15 no.5
    • /
    • pp.457-463
    • /
    • 2013
  • In recent days, cooperative diversity and communication security become important research issues for wireless communications. In this paper, to achieve low probability of interception (LPI) and high throughput in the cooperative single-carrier frequency division multiple access (SC-FDMA) system, a new physical layer transmission scheme is proposed, where a new encryption algorithm is applied and adaptive modulation is further considered based on channel state information (CSI). By doing so, neither relay node nor eavesdropper can intercept the information signals transmitted from user terminal (UT). Simulation results show above new physical layer transmission scheme brings in high transmission safety and secrecy rate. Furthermore, by applying adaptive modulation and coding (AMC) technique according to CSI, transmission throughput can be increased significantly. Additionally, low peak-to-average power ratio (PAPR) characteristic can still be remained due to the uniform distribution of random coefficients used for encryption algorithm.

STBC SC-FDE based on LS-Algorithm for Fixed Broadband Wireless Access System

  • Kim Han Kyong;Hwang Ho Seon;Baik Heung Ki
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.596-599
    • /
    • 2004
  • We propose an Alamouti-like scheme for combining space-time block coding with single-carrier frequency-domain equalization(SC-FDE) in fixed broadband wireless access environment. With two transmit antennas, the scheme is shown to achieve significant diversity gains at low complexity over frequency-selective fading channels

  • PDF

공급 사슬 상에서 Cross Docking을 고려한 Vehicle Routing Scheduling(VRS)

  • 이경민;이영해
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.11a
    • /
    • pp.325-328
    • /
    • 2003
  • Fierce competition in today's global markets, the heightened expectation of customers have forced business enterprises to invest in, and focus attentions on, their Supply Chains, Also Cross Docking is an essential part of SC, and integrating Cross Docking with vehicle routing scheduling is needed to smoothly link the physical flow of SC, However, there is no the mathematical model which focuses on Cross Docking with vehicle routing scheduling. Therefore, the integrating model considers Cross Docking and vehicle routing scheduling will be developed in this paper. And the solution based on Tabu algorithm to this model will be provided.

  • PDF