• Title/Summary/Keyword: SBR 반응조

Search Result 67, Processing Time 0.025 seconds

Nitrogen Removal Characteristics in Two-Sludge System of SBR Type Using Sewage Wastewater of Low C/N Ratio (낮은 C/N 비에서 운영되는 SBR 유형의 Two-Sludge 공정의 질소 제거 특성)

  • Ryu, Hong-Duck;Kim, Hak-In;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • In this study, nitrogen removal characteristics of SBR3 process, which is two-sludge system of sequencing batch reactor(SBR) type, were investigated, with comparison of those of SBR1 process, which is conventional SBR process, and SBR2 process, which was designed to enhance denitrification efficiency through step-feeding of wastewater, using domestic wastewater. SBR3 process of two-sludge type can perform external nitrification, on which nitrification occurs in separated reactor, and enhanced denitrification using biosorbed organics. In the results with domestic wastewater, T-N removal efficiency of SBR3 process was better than those of SBR1 and SBR2 processes. It was observed that bigger difference of T-N removal efficiency between SBR3 process and SBR1 & SBR2 processes was showed at low C/N ratio than that at high C/N ratio resulting from more efficient use of organics by biosorption mechanism in denitrification of SBR3 process than those of SBR1 and SBR2 processes. In addition, T-N removal efficiency of SBR3 process according to influent T-N loading rate was better than those of SBR1 and SBR2, even though influent T-N loading rate of SBR3 process was higher than that of SBR1 and SBR2 process resulting from operation of SBR3 process in short hydraulic retention time(HRT) by external nitrification.

Modeling of SBR Process for Nitrogen ]Removal Via Quadratic Polynomial (이차다항식을 이용한 질소제거 SBR공정의 모델링)

  • 김동원;박장현;이호식;박영환;박귀태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.145-148
    • /
    • 2003
  • 본 논문에서는 이차다항식을 이용하여 생화학적인 공정의 모델링을 행한다. SBR 반응조에서 질소제거를 위한 수처리 공정이 제시되었으며, 이 공정의 ORP값을 모델링하고 동정하기 위해 서로 다른 형태의 선형모델이 소개되었으며 결과를 비교하고 분석한다 시뮬레이션 결과로부터 합리적이고 효율적으로 모델링 될 수 있음을 검증한다.

  • PDF

Nutrient Removal using the Denitrifying Phosphate Accumulating Organisms (dPAOs) and Microbial Community Analysis in Anaerobic-Anoxic Sequencing Batch Reactor (Denitrifying Phosphate Accumulating Organisms (dPAOs)을 이용한 영양소제거 및 반응조내 미생물 분포 조사)

  • 박용근;이진우;이한웅;이수연;최의소
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.113-118
    • /
    • 2002
  • Laboratory experiments were aimed to evaluate the effect of nitrate as a electron acceptor during the biological phosphorus uptake and to investigate the microbial community. Anaerobic-anoxic sequencing batch reactor (SBR) compared the removal behaviour to anaerobic-oxic SBR, both SBRs maintained lower effluent quality with 1.0 mgp/1. Anaerobic-anoxic SBR was able to remove additional 5.0 to 7.0 mg (P+N)/ι than other biological nutrient removal (BM) system. Therefore, it was proposed that the anaerobic-anoxic SBR was more effective at weak sewage. From the results of the maicrobial community analysis, it can be inferred that denitrifying bacteria and polyphosphate accumulating bacteria coexist in anaerobic-anoxic SBR during stable condition for removing the nitrogen and phosphorus. Particularly, it was suggested that the Zoogloea ramigera in the $\beta$-subclass of proteobacteria and the Alcaligenes defragrans of the Rhodocyclus group in the $\beta$-subclass of proteobacteria played a major role for removing the nitrogen and phosphorus as dPAOs (denitrifying phosphate accumulating organisms).

Positive Pilot Research of SBR Process with Flexible Vertical (가변형 간벽을 이용한 SBR 공정의 실증 Pilot 연구)

  • Kim, Man-Soo;Park, Jong-Woon;Park, Chul-Whi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.4
    • /
    • pp.438-444
    • /
    • 2005
  • This study is to install the flexible vertical in order to separate not only the time but also the space in the single reactor by opening and closing the flexible vertical, and to intensify the aerobic, anaerobic and anoxic reactions by reducing the time to activate the microorganism for nitrification, denitrification, release of organic phosphate and luxury uptake of ortho-phosphate. Eventually the result of this study obtained each 90.9%, 76.4% for the removal efficiency of total nitrogen and phosphate. Also, content rate of phosphate at excess sludge was higher $25{\sim}30%$ for SBR reactor with the flexible verticals than existing SBR process. It would be concluded that SBR reactor with flexible verticals is promising for nitrogen and phosphate removal conditions than conventional SBR processes.

Estimation of Nutrient Removal Efficiency and Phase Conversion Rate of Single Reactor SBR and SBR with Flexible Vertical (단일 및 가변형 SBR 공법의 영양염류 처리효율 및 "상"전환속도 평가)

  • Kim, Man-Soo;Park, Jong-Woon;Park, Chul-Whi;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.11
    • /
    • pp.1215-1221
    • /
    • 2005
  • The purpose of this research was to compare the nutrient removal efficiency, and to estimate the net reaction time in order to calculate a "phase" transfer rate. SBR(SBR1) with flexible verticals and single reactor SBR(SBR1). Consequently, the removal efficiencies of $COD_{Cr}$, and $BOD_5$ in SBR1 and SBR2 were 91.5%, 97.5% and 90.4%, 97.3%, Respectively. Accordingly, the organic removal efficiency was not distinguished in both processes. In the T-N and T-P removal efficiencies, however, SBR1 obtained higher removal efficiency than SBR2, at 12.1% and 7.6% respectively. Also, in the experiment to estimate the "phase" transfer rate, SBR1 was higher than SBR2 Because SBR1 has two phases in the single reactor simultaneously, it has the buffer capacity to reduce the "phase" transfer time and provides a definite reaction condition.

Design Parameters of Sequencing Batch Reactor treating ship sewage (연속 회분식 공정(SBR)을 이용한 선박 오 ${\cdot}$ 폐수처리 설계인자 도출)

  • Park, Sang-Ho;Kim, In-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.293-298
    • /
    • 2005
  • Lab scale experimental study was carried out for SBR process, to investigate the effects of influent ship sewage organic compound removal and Bacillus sp. state on design parameters. This process was able to remove nitrogen and phosphorus as well as organic matter efficiently. More than 95% of chemical oxygen demand(COD) were removed. In addition, about 97% of total nitrogen (T-N) was reduced. The total phosphorus(T-P) reduction averaged 93%. The performance load of SBR process was shown to be 0.095kg ${\cdot}$ TOC/$m^{3}$ ${\cdot}$ day. The pH was decreased from 8.1 to 7.0 within 30 min and increased to 7.3 at the end of anoxic stage, and these phenomena were explained. The sluge produced in the SBR process is characterized by low generation rate (about 0.36kg ${\cdot}$ MLSS/kg ${\cdot}$ TOC) and excellent settleability. The number of Bacillus sp. in the SBR was 24.2%, indicating that Bacillus sp. was a predominant species in the reactor.

  • PDF

Effect of Feeding Pattern and Anaerobic Fill Time on the Denitrifcation and Sludge Settling Ability in the SBR Process (SBR 공정에서 유입수 주입방식과 비 포기 유입수 주입시간이 탈질효율과 슬러지 침강성에 미치는 영향)

  • Lee, Sang-Min;Nam, Se-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.719-725
    • /
    • 2005
  • Anaerobic fill time and feeding pattern in SBR operation were investigated to find way of minimizing poor nitrogen removal efficiency in BNR process without external carbon addition. The three types of the modified SBR operations that were CO-SBR, IA-SBR, and SF-SBR were tested by lab-scale and pilot-scale SBR processes($2\;m^3/day$). In addition, practical equation for biological nitrogen removal was suggested and the equation considered the effect of ratio of fill volume over whole SBR volume and the ratio of step-feed in SBR. The denitrification efficiency of the SF-SBR was best among the three SBRs and followed by IA-SBR, and CO-SBR. The efficiency was 95%, 61%, and 19%, respectively. Looking at the change of sludge floc density by the length of anaerobic fill time, the density of sludge floc at 1 hour and 2 hours of anaerobic fill time were greater than 3 hours of one. The floc size distributions were $100{\sim}300\;{\mu}m$ and $200{\sim}400\;{\mu}m$ with respect to anaerobic fill time 2 hours and 3 hours, respectively.

Advanced Wastewater Treatment using Sequencing Batch Reactor on ship's sewage (연속 회분식 공정(SBR)을 이용한 선박 오·폐수의 고도처리)

  • Park Sang-Ho;Kim In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.475-480
    • /
    • 2005
  • Lab scale experimental study was carried out for SBR process, to investigate the effects of influent ship sewage organic compound removal and Bacillus sp. state on design parameters. This process was able to remove nitrogen and phosphorus as well as organic matter efficiently. More than $92.0\%$ of chemical oxygen demand(COD) were removed. In addition, about $84.0\%$ of total nitrogen (T-N) was reduced. The total phosphorus(T-P) reduction averaged $93\%$. The performance load of SBR process was shown to be $0.095kg{\cdot}TOC/m3{\cdot}day$. The pH was decreased from 8.1 to 7.0 within 30 min and increased to 7.3 at the end of anoxic stage, and these phenomena were explained. The sludge produced in the SBR process is characterized by low generation rate (about $0.36kg{\cdot}MLSS/kg{\cdot}TOC$) and excellent settleability. The number of Bacillus sp. in the SBR was $24.2\%$, indicating that Bacillus sp. was a predominant species in the reactor.

Simplification of ASM No. 1 Using Aerobic-Anoxic SBR (호기-무산소 SBR 반응조를 이용한 ASM No. 1 모델의 간략화)

  • Kim, Shin Geol;Choi, In Su;Koo, Ja Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.409-420
    • /
    • 2007
  • ASM No. 1 is a very useful model to analyze wastewater treatment system removing organic carbon and nitrogen material. But it isn't adequate to control the wastewater treatment system with real time since it has many material divisions and parameters. So, the purpose of this study is the simplification of ASM No. 1 to control the wastewater treatment system. ASM No. 1 was changed with the model which has 3 material divisions(COD, $NH_4{^+}$, $NO_3{^-}$) and two phases(Aerobic and Anoxic condition). SBR was running with two phases(Phase I and II). Phase II running 20 minutes with aerobic time was used for deciding model parameters and Phase I running 12 minutes with aerobic time was used for proving the simplified model. The simplified model was compared with ASM No. 1 using data of Phase I and II. As a result of model comparison, the simplified model has enough ability to express the variation of $NH_4{^+}$ compound.

Solids and Nitrogen Removal in the Sludge Digestion using a Sequencing Batch Reactor (연속회분식반응조를 이용한 슬러지 소화에서 고형물과 질소의 제거)

  • Kim, Sung Hong;Lee, Yoon Heui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.669-675
    • /
    • 2006
  • Intermittent aerobic digestion experiments using a sequencing batch reactor (SBR) were carried out in this study. Aeration ratio was found to be an important operation factor for the reduction of solids and nitrogen. As the sludge digested, organic nitrogen was released from the solids and oxidized to nitrate nitrogen. Biological denitrification was also significant and the denitrification rate was limited by aeration ratio. Under the condition of 0.25-0.75 of aeration ratio, acclimation of ammonia nitrogen was not observed and pH were preserved near neutral in the intermittent aerobic digestion. As the aeration ratio increased, solids reduction was increased whereas dissolved nitrogen removal was decreased. Based on the experiments, 17-2% of VSS reduction and over 80% of dissolved nitrogen removal were practicable by intermittent aerobic digestion using a SBR when the MSRT were designed 8-32 days and aeration ratio was operated about 0.25-0.75.