• Title/Summary/Keyword: SBR(sequencing batch reactor)

Search Result 157, Processing Time 0.023 seconds

Greenhouse gases emission from aerobic methanotrophic denitrification (AeOM-D) in sequencing batch reactor

  • Lee, Kwanhyoung;Choi, Oh Kyung;Lee, Jae Woo
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.171-184
    • /
    • 2017
  • This study presents the effect of hydraulic retention time (HRT) on the characteristics of emission of three major greenhouse gases (GHGs) including $CH_4$, $CO_2$ and $N_2O$ during operation of a sequencing batch reactor for aerobic oxidation of methane with denitrification (AeOM-D SBR). Dissolved $N_2O$ concentration increased, leveled-off and slightly decreased as the HRT increased from 0.25 to 1d. Concentration of the dissolved $N_2O$ was higher at the shorter HRT, which was highly associated with the lowered C/N ratio. A longer HRT resulted in a higher C/N ratio with a sufficient carbon source produced by methanotrophs via methane oxidation, which provided a favorable condition for reducing $N_2O$ formation. With a less formation of the dissolved $N_2O$, $N_2O$ emission rate was lower at a longer HRT condition due to the lower C/N ratio. Opposite to the $N_2O$ emission, emission rates of $CH_4$ and $CO_2$ were higher at a longer HRT. Longer HRT resulted in the greater total GHGs emission as $CO_2$ equivalent which was doubled when the HRT increased from 0.5d to 1.0 d. Contribution of $CH_4$ onto the total GHGs emission was most dominant accounting for 98 - 99% compared to that of $N_2O$ (< 2%).

Study on the optimum operation system of Sequencing Batch Reactor (연속 회분식 반응조의 최적 운전시스템에 관한 연구)

  • Eom, Tae Kyu;Ko, Eun Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.4
    • /
    • pp.54-61
    • /
    • 1999
  • SBR process used to evaluate the removal of organics, nitrogen and phosphorus on the basis of a report of research on a precedence at various operation cycle and condition change. Effluent concentration of COD were 50mg/l, 50mg/l, 90mg/l respectively, The removal rates of COD were nearly over 95% at Run 1, 2 and 4. But at Run 3, Effluent concentration of COD was 255.0mg/l, The removal rate of COD was 87% at Run 3. As Oxic/Anoxic rate was fixed and operating cycle of Oxic/Anoxic was changed, the removal rates of T-N were 74.7%, 46.9%, 28.5%, 63.3% respectively at Run 1~4. The case of Run 1 was best result. The removal rates of T-P was appeared in proportion to T-N removal rates and rest of $NO_2-N$. The removal rates of T-P were 51.2%, 35.5%, 41.5%, 51.9% respectively. The removal rates of COD, T-N, T-P were influenced on the change of SBR operation cycle. As organic loading rate was $1.43kgCOD/m^3day$ and C/N ratio was 3.0, operation cycle of Run 1 was best condition of T-N removal rates and T-P removal.

  • PDF

Diagnosis and Control System of Wastewater Treatment Processes Using Intelligent Approaches (지능형 기법을 이용한 축산폐수처리장의 진단ㆍ제어 시스템)

  • Bae, Hyeon;Seo, Hyun-Yong;Jun, Byong-Hee;Kim, Sung-Shin;Kim, Ye-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1315-1318
    • /
    • 2003
  • Wastewater treatment processes are usually located in the outskirts of cities. But these processes should be dealt with continuous maintenance by expert operators. Therefore, in this paper, unmaned and automated control system is designed for the SBR(Sequencing Batch Reactor) plant. This plant is constructed in Gimhae city. Networks and wireless modules are employed for the data transmission. A local controller is in the SBR plant as a client and a monitoring system is located in the other place as a server. Remote control and monitoring system are constructed at the laboratory of ours. Measured data from plant sensors are translated to the remote site using communication modules, and then the data could be displayed and analyzed by means of remote monitoring and control systems.

  • PDF

연속회분식 반응기에서 생물학적 인 제거에 대한 pH의 영향

  • Jeon, Che-Ok;Park, Jong-Mun
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.105-108
    • /
    • 2000
  • Enhanced biological phosphorus removal (EBPR) is not always successfully achieved by anaerobic/aerobic operation. It has been reported that the EBPR deterioration was caused by the outgrowth of glycogen-accumulating organisms (GAO) over polyphosphate-accumulating organisms (PAO). It was found that pHcould be a tool which might induce the success of EBPR in a sequencing batch reactor (SBR) supplied with acetate. When the pH of anaerobic phase was controlled at 7.0, the operation resulted in failure of EBPR. However, when the pH of anaerobic phase increased up to 8.4, complete EBPR was achieved. We explained the mechanism of pH effect on the competition between GAO and PAO with experimental results and previously proposed biochemical models.

  • PDF

Role of Sodium lon in Biodegradation of Nitroaromatic Compound by Activated Sludge and Pure Cultures

  • Jo, Kwan-Hyung
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.169-175
    • /
    • 1999
  • 2,4-Dinitrophenol(DNP) is a metabolic uncoupler that prevents cells from creating energy for growth and it has been suggested that the availability of sodium ions may be important in mitigating the effects of uncouplers. Accordingly, the degradation of DNP was investigated using activated sludge which had been adapted to mineralize DNP. After the acclimation of the activated sludge, the effect of sodium ions on the toxicity of high concentrations(80 to 100mg/L) of DNP was investigated over a sodium ion concentration range of 9.3$\times$10-5 to 94mM. The concentration of sodium ions in the activated sludge mixed liquor seemed to have little effect on the DNP toxicity. However, a lack of sodium in the grwoth media resulted in a reduction of the DNP degradation rate by a bacterial isolate from the activated sludge culture identified as Nocardia asteroides.

  • PDF

Estimation of Dominant Bacterial Species in a Bench-Scale Shipboard Sewage Treatment Plant

  • Mansoor, Sana;Ji, Hyeon-Jo;Shin, Dae-Yeol;Jung, Byung-Gil;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.28 no.10
    • /
    • pp.899-905
    • /
    • 2019
  • Recently, an innovative method for wastewater treatment and nutrient removal was developed by combining the sequence batch reactor and membrane bioreactor to overcome pollution caused by shipboard sewage. This system is a modified form of the activated sludge process and involves repeated cycles of mixing and aeration. In the present study, the bacterial diversity and dominant microbial community in this wastewater treatment system were studied using the MACROGEN next generation sequencing technique. A high diversity of bacteria was observed in anaerobic and aerobic bioreactors, with approximately 486 species. Microbial diversity and the presence of beneficial species are crucial for an effective biological shipboard wastewater treatment system. The Arcobacter genus was dominant in the anaerobic tank, which mainly contained Arcobacter lanthieri (8.24%), followed by Acinetobacter jahnsonii (5.81%). However, the dominant bacterial species in the aerobic bioreactor were Terrimonas lutea (7.24%) and Rubrivivax gelatinosus (4.95%).

A Study on Application of SBR Process for RO Retentate Treatment (RO 농축수 처리를 위한 SBR 공정 적용에 관한 연구)

  • Kim, Il-Whee;Joo, Hyun-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.79-85
    • /
    • 2012
  • In this study, Application of sequencing batch reactor (SBR) process for RO retentate treatment was performed. Efficiency of treatment by load and temperature variation was tested. The SBR process was operated two types as HRT per one cycle was 8 and 12 hours, respectively. Methanol was injected for an effective denitrificaion owing to low C/N ratio of the RO retentate. TN removal efficiency of the SBR process was relatively stable at the change of flow-rate and temperature. The optimum time cycle of SBR process was 2 cycle/day for TN removal, and in the case of 3 cycle/day, the effluent TN concentration was found under the effluent quality standard. In the result of assessment, the application of SBR process for RO retentate treatment was effective and could be utilized to design for the wastewater treatment plant. The specific nitrification rate (SNR) and specific denitrification rate (SDNR) were $0.043{\sim}0.066kg\;NH_3-N/kg\;MLVSS{\cdot}day$ and $0.096{\sim}0.287kg\;NH_3^--N/kg\;MLVSS{\cdot}day$, respectively. The derived kinetic could be applied for design to the aerobic and anoxic tank in the RO retentate treatment.

Operation diagnostic based on PCA for wastewater treatment (PCA를 이용한 하폐수처리시설 운전상태진단)

  • Jun Byong-Hee;Park Jang-Hwan;Chun Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.383-388
    • /
    • 2006
  • SBR is one of the most general sewage/wastewater treatment processes and, particularly, has an advantage in high concentration wastewater treatment like sewage wastewater. A Kernel PCA based fault diagnosis system for biological reaction in full-scale wastewater treatment plant was proposed using only common bio-chemical sensors such as ORP(Oxidation-Reduction Potential) and DO(Dissolved Oxygen). During the SBR operation, the operation status could be divided into normal status and abnormal status such as controller malfunction, influent disturbance and instrumental trouble. For the classification and diagnosis of these statuses, a series of preprocessing, dimension reduction using PCA, LDA, K-PCA and feature reduction was performed. Also, the diagnosis result using differential data was superior to that of raw data, and the fusion data show better results than other data. Also, the results of combination of K-PCA and LDA were better than those of LDA or (PCA+LDA). Finally, the fault recognition rate in case of using only ORP or DO was around maximum 97.03% and the fusion method showed better result of maximum 98.02%.

A Study on Autocontrolled SBR for Biological Nutrient Removal with External Carbon Sources (외부탄소원 주입시 영양염류의 생물학적 제거를 위한 자동제어 SBR 공정에 관한 연구)

  • Lee, Byung-hun;Kang, Seong-jae;Lim, Sung-il;Yoo, Pyung-jong
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.371-377
    • /
    • 2002
  • The purpose of this study is to develop effective operating process in order to achieve more suitable conditions of Anoxic-Oxic-Anoxic-Stripper(AOAS) SBR through real-time control. To improve the removal efficiency, glucose, methanol and synthetic food waste acid fermentant were added as an external carbon source, In the case of glucose and synthetic food waste acid fermentant, TN, TP were removed to average 86.9%, 73.0% respectively. Methanol was removed to average 64.6%, 55.4% respectively. The synthetic food waste acid fermentant proved to be the most efficient and allowed for the substitution of an external carbon source. The removal rate of $COD_{Cr}$, was approximately 90% at all cases. The results of the study that a correlation between ORP (Oxidation-Reduction Potential), pH and DO and nitrification or denitrification when an external carbon source is added and when it isn't was showed that ${\Delta}ORP$ is suitable parameter. ORP reacted properly to denitrification (${\Delta}ORP<-10$) and nitrification (${\Delta}ORP<0$). The use of real-time control saved anywhere between 61 and 67 minutes at the anoxic(1) stage and 26 to 52 minutes at the oxic(1) stage. When the time saved from the anoxic(1) and oxic(1) was added to the anoxic(2) stage for the removal efficiency of TN and TP increased from 0.7 to 13.9% and 12 to 35 % respectively.

Application of SBR Process to Treat Pickling Wastewater including the High Nitrate and Ca+2 (고농도 질산성질소와 Ca+2을 함유한 산세폐수의 효과적인 처리를 위한 SBR 공정의 적용)

  • Kim, Seung-jun;Choi, Yong-su;Bae, Woo-keun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.215-221
    • /
    • 2006
  • This research presents results from laboratory and pilot-scale experiments to remove high-nitrate in pickling wastewater using the sequencing batch reactor (SBR) as a biological method. During the experimental periods, the influent concentrations of NOx-N and $Ca^{+2}$ were analyzed to be 350-1,600 and 700-800 mg/L, respectively. In order to provide carbon source for denitrification, methanol has been added in proportion to the influent nitrate loading. The mean concentrations of MLSS and MLVSS, the fraction of volatile solids in sludge and the sludge volume index were measured to be 27 g/L, 5 g/L, 18.5% and 7.5, respectively. The solid retention time was kept in the range of 18 to 22 days, specific denitrification rate ($U_{dn}$) was $0.301g{NO_3}^--N/gVSS/day$. The oxidized nitrogen concentration of effluent ranged 2-34 mg/L with an average of 5.2 mg/L, the overall reduction in total nitrogen was more than 99.2%. In order to treat the pickling wastewater including the high concentration of nitrate and $Ca^{+2}$, the continuous flow process is not suitable because the specific gravity of the sludge is considerably increased by $Ca^{+2}$, thus the SBR process is shown to be very effective to treat the pickling wastewater.