• Title/Summary/Keyword: SBR(sequencing batch reactor)

Search Result 157, Processing Time 0.031 seconds

Waste treatment with the pilot scale ATAD and EGSB pig slurry management system followed by sequencing batch treatment

  • Lee, Young-Shin;Han, Gee-Bong
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.277-284
    • /
    • 2015
  • Experiments for highly concentrated contaminants in pig waste slurry were carried out for the feasibility test of a pilot-scale innovative process scheme of engaging autothermal thermophilic aerobic digestion (ATAD) and expended granular sludge bed (EGSB) followed by sequencing batch reactor (SBR) system. Contaminants in pig waste slurry such as organic substance, total nitrogen (TN), ammonia nitrogen and total phosphorus (TP) contents were successfully reduced in the system. Total volatile solids (TVS) and chemical oxygen demands (COD) for organic matter in the feed were 32.92 g/L and 42.55 g/L respectively, and they were reduced by about 98.7% and 99.2%, respectively in the system. The overall removal efficiencies for TN and ammonium nitrogen were found to be 98.1 and 98.5%, respectively. The overall removal efficiency for total phosphorus was also found to be 92.5%. Faecal coliform density was reduced to <$1.2{\times}10^4CFU/g$ total solids. Biogas and $CH_4$ were produced in the range of 0.39-0.85 and $0.25-0.62m^3/kg$ [VS removed], respectively. The biogas produced in the system comprised of $295{\pm}26ppm$ (v/v) [$H_2S$].

Influence of Different Operational pH Conditions and Granulation on Enhanced Biological Sequencing Batch Phosphorus Removal (생물학적 회분식 인 제거 공정에서 pH의 영향과 그래뉼 생성)

  • Ahn, Johwan;Seviour, Robert
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.754-759
    • /
    • 2011
  • A sequencing batch reactor (SBR) was operated under different pH conditions to better understand the influence of pH to granulation in enhanced biological phosphorus removal systems. Granules from the SBR were also investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). Considerable decreases in the amount of phosphorus released per substrate provided under anaerobic conditions and the content of biomass polyphosphate under aerobic conditions were observed when pH was changed from 7.5 to 7.0, followed by 6.5. Aerobic granulation was also observed at pH 7.0. A number of bacteria with the typical morphological traits of tetrad-forming organisms (TFOs) were observed at pH 7.0, including large members of cluster. Filamentous bacteria were also there in large numbers. The occurrence and growth of granules were further enhanced at pH 6.5. A SEM analysis showed that the aerobic granules had a compact microbial structure with shaperical shape and morphologically consisted of aggregates of small coccoid bacteria and filamentous bacteria encapsulated by extracellular polymeric substance. The main material ions identified by EDX moreover revealed that the structural materials for polyphosphate in the granules include phosphorus, potassium and calcium. Therefore, these results strongly suggested that PAOs are a dominant population in the microbial community of the aerobic granules.

Biosorption Characteristics of Organic Matter in a Sequencing Batch Reactor : Effect of Sludge Retention Time (연속 회분식 반응기내 유기물 생물흡착특성: SRT 영향)

  • Kim, Keum-Yong;Kim, Jin-Hyung;Kim, Dae-Keun;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.2
    • /
    • pp.175-180
    • /
    • 2008
  • The objective of this study was to investigate biosorption of organic matter on EPS(Extracellular Polymeric Substances) at different SRT(Sludge Retention Time) in a SBR(Sequencing Batch Reactor) process, which was operated with the following operation steps : Fill-React-Settle-Decant-Idle. The hydraulic retention time was set to be 24 hours. The results obtained from this study showed that the organic removal efficiency per unit microbial biomass decreased with increasing SRT, and the corresponding EPS amount also did. The percent removal of organic by biosorption increased with SRT, and it reached to 53.2% at SRT of 30 days. However, the highest biosorption per microbial biomass(48.6 mgCOD/gVSS) was found at SRT of 2 days. The EPS analysis was performed by measuring TSS, TCOD$_{Cr}$, and TKN. The EPS production per unit microbial biomass was observed to be high at a low SRT. Due to the above result, the floc formation was hindered and therefore poor settlement of sludge resulted in decreasing the COD removal efficiency. It was therefore concluded that the consideration of the system design should include the characteristic of EPS as well as other factors such as SRT, MLSS, and organic loading.

Sidestream Deammonification (반류수탈암모니아 공정)

  • Park, Younghyun;Kim, Jeongmi;Choi, Wonyoung;Yu, Jaecheul;Lee, Taeho
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.109-120
    • /
    • 2018
  • Sidestream in domestic wastewater treatment plants contains high concentration of ammonium, which increases nitrogen loading rate in the mainstream. The process for deammonification consisting of partial nitritation-anaerobic ammonium oxidation (ANAMMOX) and heterotrophic denitrification is an economical method of solving this problem. Currently, about 130 full-scale deammonification plants are fully operating around the world, but none is in Korea. In order to transfer the principal information about sidestream deammonification processes to researchers and operators, we summarized basic concepts, processes type, and key influence factors (e.g., concentration of nitrogen compounds, dissolved oxygen (DO), temperature, and pH). This review emphasis on the processes of single-stage sequencing batch reactor (SBR) deammonification, which are widely used as full-scale plants. Since simultaneous processes of partial nitritation, ANAMMOX and heterotrophic denitrification occur in a single reactor, the single-stage SBR deammonification requires appropriate control/monitoring strategies for several operating factors (DO and pH mostly) to achieve efficient and stable operation. In future, AB-process consisting of A-stage (energy harvesting from organics) and B-stage (ammonium removal without organics) will be applied to the wastewater treatment process. Thus, we suggest mainstream deammonification for B-stage connected with the sidestream deammonification as seeding source of ANAMMOX. We expect that many researchers will become more interested in the sidestream deammonification.

Development of a Diagnosis Algorithm of Influent Loading Levels Using Pattern Matching Method in Sequencing Batch Reactor (SBR) (연속회분식반응기에서 패턴매칭방법을 이용한 유입수 부하수준 진단 알고리즘 개발)

  • Kim, Ye-Jin;Ahn, Yu-Ga;Kim, Hyo-Su;Shin, Jung-Phil;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.2
    • /
    • pp.102-108
    • /
    • 2009
  • DO, ORP and pH values measured during SBR operation can provide information about removal reaction of organic contaminants and nutrient materials in the reactor. It is already generalized control strategy to control reaction phase time using their special patterns indicating the end of the removal reactions. However, those informations are limited to point out the end time of oxidative reaction in the aerobic phase or reductive reaction in the anoxic phase without giving quantitative value of influent loading level. In this research, a diagnosis algorithm which can estimate the loading level of carbon and ammonia as high, medium and low was developed using the basic measurements like DO, ORP, and pH. It will be possible to know the level of influent loading rate from those online measurements without experimental analysis.

Nitrogen and Phosphorus Removal Characteristics by the Variation of Aeration Time in SBR (SBR에서 포기기간 변경에 따른 질소.인 제거 특성)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.2
    • /
    • pp.116-123
    • /
    • 2009
  • Laboratory scale experiments were conducted to investigate the removal characteristics of nitrogen and phosphorus by the variation of aeration time in four sequencing batch reactors (SBRs). In R1 which has the shortest aeration time as 1 h, MLVSS concentration in reactor decreased by the wash-out of biomass because of the poor sedimentation. The TOC removal efficiencies were almost similar in 3 reactors except R1. At the low aeration time as 1 h, the nitrification was severely inhibited by the deficiency of oxygen. ${NH_4}^+$-N removal efficiency was decreased by the decrease of aeration time. At the aeration time over 2 h, the phosphorus removal efficiency was not affected by the variation of aeration time. The nitrification was inhibited but the phosphorus release and uptake was not inhibited by the decrease of low aeration time. Therefore, we can see that the phosphorus removal microorganisms are superior to nitrification microorganisms in oxygen utilization.

Detection of Denitrification Completion Using Pattern Matching Method in Sequencing Batch Reactor(SBR) (연속회분식반응기에서 패턴매칭방법을 이용한 탈질완료 감지 알고리즘 개발)

  • Kim, Ye-Jin;Ahn, Yu-Ga;Shin, Jung-Phil;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.944-949
    • /
    • 2007
  • The profiles of on-line sensors such as DO, ORP and pH can provide useful information about pollutant removal reaction in sequencing batch reactor. For detection of denitrification completion, the nitrate hee point from ORP profile has been considered as a main indicator of denitrification completion. However, many researchers pointed out that the nitrate knee usually disappeared been the progress of denitrification is so fast and it makes the fault at detection of denitrification completion. In this paper, dynamic time warping(DTW) method and discriminant analysis were used to detect and isolate the profiles of two cases, denitrification completed and uncompleted. As the results, proposed methods can detect state of denitrification successfully.

Pig slurry treatment by the pilot scale hybrid multi-stage unit system (HMUS) followed by sequencing batch reactor (SBR) (HMUS와 SBR 반응조를 이용한 축분처리에 관한 연구)

  • Lee, Young-Shin;Han, Gee-Bong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.2
    • /
    • pp.63-70
    • /
    • 2013
  • Experiments in a pilot-scale hybrid multi-stage unit system (HMUS) combination of ATAD and EGSB followed by SBR process for pig slurry treatment were conducted to demonstrate the feasibility of using autothermal thermophilic aerobic digestion (ATAD) and expended granular sludge bed (EGSB) followed by sequencing batch reactor (SBR) system. Contaminants in pig slurry with high organic matter, nitrogen (N) and phosphorus (P) content were completely removed in the combined process. The highest removal rate for CODcr among contaminants in the feed pig slurry was attained by about 43.3% in ATAD unit process. Also TS removal rate of 96.5% was attained and the highest in the next coagulation unit process. The highest removal rate of CODcr under operating parameter conditions of OLR(organic loading rate), 3-6Kg $COD/m^3{\cdot}day$ and line velocity, 1.5-4m/h was earned at 3days of HRT. The disinfection of pathogens was effective at 50,000mg/L of TS in ATAD unit process. Biogas production per organic removal was $2.3{\sim}8.5m^3/kgTS{\cdot}d$ (average $5.2m^3/kgTS{\cdot}d$) in EGSB unit process. The average removal rates of CODcr 71.7%, TS 64.1%, TN 45.9%, and TP 50.4% were earned in the intermittent aeration SBR unit process.

Nitrogen Removal Characteristic of Excreta Wastewater Using SBR and MBR Processes (SBR 및 MBR 공정을 이용한 분뇨폐수에서의 질소제거 특성)

  • Jung, Jin-Hee;Yoon, Young-Nae;Lee, Seul-Kee;Han, Young-Rip;Lee, Seung-Chul;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1485-1491
    • /
    • 2015
  • There are two treatment processes that are currently applied to ships are the biological treatment process using the activated sludge and the electrochemical treatment. However, neither of them are able to remove both nitrogen and phosphorus due to their limited ability to remove organic matters, which are main causes of the red tide. This study was conducted to identify the characteristics of nitrogen removal factors from manure wastewater by replacing the final settling tank in SBR (Sequencing Batch Reactor) process and applying immersion type hollow fiber membrane. SBR process is known to have an advantage of the least land requirement in special environment such as in ship and the immersion type hollow fiber membrane is more stable in water quality change. As the result, the average in the cases of DO (Dissolved Oxygen) is 2.9(0. 6~3.9) mg/L which was determined to be the denitrifying microorganism activity in anaerobic conditions. The average in the cases of ORP (Oxidation Reduction Potential) is 98.4~237.3 mV which was determined to be the termination of nitrification since the inflection point was formed on the ORP curve due to decrease in the stirring treatment after the aeration, same as in the cases of DO. Little or no variation in the pH was determined to have positive effect on the nitrification. T-N (Total Nitrigen) removal efficiencies of the finally treated water were 71.4%, 72.3% and 66.5% in relatively average figures, thus was not a distinct prominence. In being applied in ships in the future, the operating conditions and structure improvements are deemed necessary since the MEPC (Marine Environment Protection Committee). 227(64) ship sewage nitrogen is less than the standard of 20 Qi/Qe mg/L or the removal rate of 70%.

Influence of Free Nitrous Acid on Thiosulfate-Utilizing Autotrophic Denitrification (티오황산염을 이용한 황탈질과 Free Nitrous Acid의 영향)

  • Ahn, Johwan;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.220-225
    • /
    • 2014
  • A sequencing batch reactor (SBR) was operated to obtain thiosulfate-utilizing denitrifier cultivated with two types of electron accepter (nitrate and nitrite). Using the microbial biomass obtained from the SBR, batch tests were conducted with different nitrite concentrations (50 and 100 mg-N/L) at pH 7.0, 7.5 and 7.9 to see how free nitrous acid (FNA) negatively works on the thiosulfate-utilizing denitrification of nitrate. The specific denitrification rate (SDR) of nitrate was significantly influenced by pH and FNA. The presence of nitrite caused a remarked decrease of the SDR under low pH conditions, because of the microbiological inhibitory effect of FNA. The minimum SDR was observed when initial nitrite concentration was 100 mg-N/L at pH 7.0. Moreover. the SDR was influenced by the type of electron acceptor used during the SBR operation. Thiosulfate-utilizing denitrifier cultivated with nitrite showed smaller SDR on the thiosulfate-utilizing denitrification of nitrate than those cultivated with nitrate.