• Title/Summary/Keyword: SARS-CoV-2 vaccine

Search Result 57, Processing Time 0.022 seconds

Pre-existing Immunity to Endemic Human Coronaviruses Does Not Affect the Immune Response to SARS-CoV-2 Spike in a Murine Vaccination Model

  • Ahn Young Jeong;Pureum Lee;Moo-Seung Lee;Doo-Jin Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.2
    • /
    • pp.19.1-19.10
    • /
    • 2023
  • Endemic human coronaviruses (HCoVs) have been evidenced to be cross-reactive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a correlation exists between the immunological memory to HCoVs and coronavirus disease 2019 (COVID-19) severity, there is little experimental evidence for the effects of HCoV memory on the efficacy of COVID-19 vaccines. Here, we investigated the Ag-specific immune response to COVID-19 vaccines in the presence or absence of immunological memory against HCoV spike Ags in a mouse model. Pre-existing immunity against HCoV did not affect the COVID-19 vaccine-mediated humoral response with regard to Ag-specific total IgG and neutralizing Ab levels. The specific T cell response to the COVID-19 vaccine Ag was also unaltered, regardless of pre-exposure to HCoV spike Ags. Taken together, our data suggest that COVID-19 vaccines elicit comparable immunity regardless of immunological memory to spike of endemic HCoVs in a mouse model.

SARS-CoV-2 Omicron Mutation Is Faster than the Chase: Multiple Mutations on Spike/ACE2 Interaction Residues

  • Sinae Kim;Tam T. Nguyen;Afeisha S. Taitt;Hyunjhung Jhun;Ho-Young Park;Sung-Han Kim;Yong-Gil Kim;Eun Young Song;Youngmin Lee;Hokee Yum;Kyeong-Cheol Shin;Yang Kyu Choi;Chang-Seon Song;Su Cheong Yeom;Byoungguk Kim;Mihai Netea;Soohyun Kim
    • IMMUNE NETWORK
    • /
    • v.21 no.6
    • /
    • pp.38.1-38.8
    • /
    • 2021
  • Recently, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (B.1.1.529) Omicron variant originated from South Africa in the middle of November 2021. SARS-CoV-2 is also called coronavirus disease 2019 (COVID-19) since SARS-CoV-2 is the causative agent of COVID-19. Several studies already suggested that the SARS-CoV-2 Omicron variant would be the fastest transmissible variant compared to the previous 10 SARS-CoV-2 variants of concern, interest, and alert. Few clinical studies reported the high transmissibility of the Omicron variant but there is insufficient time to perform actual experiments to prove it, since the spread is so fast. We analyzed the SARS-CoV-2 Omicron variant, which revealed a very high rate of mutation at amino acid residues that interact with angiostatin-converting enzyme 2. The mutation rate of COVID-19 is faster than what we prepared vaccine program, antibody therapy, lockdown, and quarantine against COVID-19 so far. Thus, it is necessary to find better strategies to overcome the current crisis of COVID-19 pandemic.

Production and characterization of lentivirus vector-based SARS-CoV-2 pseudoviruses with dual reporters: Evaluation of anti-SARS-CoV-2 viral effect of Korean Red Ginseng

  • Jeonghui Moon;Younghun Jung;Seokoh Moon;Jaehyeon Hwang;Soomin Kim;Mi Soo Kim;Jeong Hyeon Yoon;Kyeongwon Kim;Youngseo Park;Jae Youl Cho;Dae-Hyuk Kweon
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.123-132
    • /
    • 2023
  • Background: Pseudotyped virus systems that incorporate viral proteins have been widely employed for the rapid determination of the effectiveness and neutralizing activity of drug and vaccine candidates in biosafety level 2 facilities. We report an efficient method for producing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pseudovirus with dual luciferase and fluorescent protein reporters. Moreover, using the established method, we also aimed to investigate whether Korean Red Ginseng (KRG), a valuable Korean herbal medicine, can attenuate infectivity of the pseudotyped virus. Methods: A pseudovirus of SARS-CoV-2 (SARS-2pv) was constructed and efficiently produced using lentivirus vector systems available in the public domain by the introduction of critical mutations in the cytoplasmic tail of the spike protein. KRG extract was dose-dependently treated to Calu-3 cells during SARS2-pv treatment to evaluate the protective activity against SARS-CoV-2. Results: The use of Calu-3 cells or the expression of angiotensin-converting enzyme 2 (ACE2) in HEK293T cells enabled SARS-2pv infection of host cells. Coexpression of transmembrane protease serine subtype 2 (TMPRSS2), which is the activator of spike protein, with ACE2 dramatically elevated luciferase activity, confirming the importance of the TMPRSS2-mediated pathway during SARS-CoV-2 entry. Our pseudovirus assay also revealed that KRG elicited resistance to SARS-CoV-2 infection in lung cells, suggesting its beneficial health effect. Conclusion: The method demonstrated the production of SARS-2pv for the analysis of vaccine or drug candidates. When KRG was assessed by the method, it protected host cells from coronavirus infection. Further studies will be followed for demonstrating this potential benefit.

Epidemiology, Virology, and Clinical Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2; Coronavirus Disease-19) (코로나바이러스감염증-19의 바이러스 (SARS-CoV-2) 특징, 전파 및 임상 양상)

  • Park, Su Eun
    • Pediatric Infection and Vaccine
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • A cluster of severe pneumonia of unknown etiology in Wuhan City, Hubei province in China emerged in December 2019. A novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was isolated from lower respiratory tract sample as the causative agent. The current outbreak of infections with SARS-CoV-2 is termed coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO). COVID-19 rapidly spread into at least 114 countries and killed more than 4,000 people by March 11, 2020. WHO officially declared COVID-19 a pandemic on March 11, 2020. There have been 2 novel coronavirus outbreaks in the past 2 decades. The outbreak of severe acute respiratory syndrome (SARS) in 2002-2003 caused by SARS-CoV had a case fatality rate of around 10% (8,098 confirmed cases and 774 deaths), while Middle East respiratory syndrome (MERS) caused by MERS-CoV killed 858 people out of a total 2,499 confirmed cases between 2012 and 2019. The purpose of this review is to summarize known-to-date information about SARS-CoV-2, transmission of SARS-CoV-2, and clinical features of COVID-19.

Newly diagnosed pediatric immunoglobulin A nephropathy after vaccination against SARS-CoV-2: a case report

  • Do Young Kim;Hyung Eun Yim;Min Hwa Son;Kee Hwan Yoo
    • Childhood Kidney Diseases
    • /
    • v.26 no.2
    • /
    • pp.91-96
    • /
    • 2022
  • The messenger RNA-based vaccine for the coronavirus disease 2019 (COVID-19) may induce glomerulonephritis, including immunoglobulin A nephropathy (IgAN). New-onset IgAN triggered by vaccination against COVID-19 has been reported rarely, especially in children. Herein, we report a pediatric case of newly diagnosed IgAN after administration of the Pfizer vaccine for COVID-19. A 12-year-old girl was referred to our hospital for evaluation of gross hematuria after inoculation with the second dose of Pfizer's COVID-19 vaccine; she had no adverse effects after the first dose. At the time of admission, she showed heavy proteinuria and persistent hematuria. Kidney biopsy revealed an IgAN, and she was treated with an oral steroid and an angiotensin-converting enzyme inhibitor. Four months after discharge, the proteinuria and hematuria resolved completely.

T Cell Immune Responses against SARS-CoV-2 in the With Corona Era

  • Ji-Eun Oh
    • Biomedical Science Letters
    • /
    • v.28 no.4
    • /
    • pp.211-222
    • /
    • 2022
  • After more than two years of efforts to end the corona pandemic, a gradual recovery is starting in countries with high vaccination rates. Easing public health policies for a full-fledged post-corona era, such as lifting the mandatory use of outdoor mask and quarantine measures in entry have been considered in Korea. However, the continuous emergence of new variants of SARS-CoV-2 and limitations in vaccine efficacy still remain challenging. Fortunately, T cells and memory T cells, which are key components of adaptive immunity appear to contribute substantially in COVID-19 control. SARS-CoV-2 specific CD4+/CD8+ T cells are induced by natural infection or vaccination, and rapid induction and activation of T cells is mainly associated with viral clearance and attenuated clinical severity. In addition, T cell responses induced by recognition of a wide range of epitopes were minimally affected and conserved against the highly infectious subsets of omicron variants. Polyfunctional SARS-CoV-2 specific T cell memory including stem cell-like memory T cells were also developed in COVID-19 convalescent patients, suggesting long lasting protective T cell immunity. Thus, a robust T-cell immune response appears to serve as a reliable and long-term component of host protection in the context of reduced efficacy of humoral immunity and persistent mutations and/or immune escape.

Multifactorial Traits of SARS-CoV-2 Cell Entry Related to Diverse Host Proteases and Proteins

  • You, Jaehwan;Seok, Jong Hyeon;Joo, Myungsoo;Bae, Joon-Yong;Kim, Jin Il;Park, Man-Seong;Kim, Kisoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.249-262
    • /
    • 2021
  • The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.

Development of Drug Candidates based on Natural Products Against COVID-19 (천연식물자원 활용 코로나19 억제 치료제 개발)

  • Se Chan Kang
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.3-3
    • /
    • 2021
  • The ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not only influenced over 1.26 billion people but also caused 2.77 million deaths worldwide (as of March 28, 2021). The vaccination could be the most efficient strategy to prevent SARS-CoV-2 infection. However, the continuous emergence of novel variants such as VUI-202012/01 (United Kingdom) and 501.V2 (South Africa) raises huge concerns about the effectiveness of the vaccine designed to target the original virus strain. Since ancient times regardless of the East and West, the plants which refered in this presentation have been consumed not only as food but also as a natural medicine to treat diverse diseases including infectious diseases. Importantly, these plants contain secondary metabolites that display antiviral activity involved in the inhibition of viral adsorption, penetration, and replication. Also, plant-derived natural medicines are expected to have a wider range of efficacy and fewer side effects than synthetic medicine, discovering novel plant-based viral agents would be a promising strategy to fight against SARS-CoV-2.

  • PDF

Ginseng, a promising choice for SARS-COV-2: A mini review

  • Ratan, Zubair Ahmed;Mashrur, Fazla Rabbi;Runa, Nusrat Jahan;Kwon, Ki Woong;Hosseinzadeh, Hassan;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.183-187
    • /
    • 2022
  • The current Covid-19 pandemic has changed the entire world and bought so many unprecedented challenges to the scientific community. More than 5 million people died due to the SARS-COV-2 outbreak. For many thousands of years, ginseng, the traditional herb has been used for various infectious diseases by traditional healers. Ginseng showed promising antiviral effects by modulating both natural and acquired immunity. Ginseng might be used as a potential therapeutic agent to prevent SARS-CoV-2 infection along with the vaccine. In this current review, we offer an alternative approach for SARS-COV-2 prevention during this unprecedented pandemic.

A Case of Isolated Acute Pancreatitis Presenting With Epigastric Pain in an 8-Year-Old Child Infected With COVID-19 (명치 통증으로 내원한 COVID-19에 감염된 8세 소아의 단독 급성 췌장염 1례)

  • Joo Ok Jin;Se Ri Jeong;Byung Ok Kwak;Sook Min Hwang;Ky Young Cho
    • Pediatric Infection and Vaccine
    • /
    • v.30 no.2
    • /
    • pp.104-110
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mainly causes respiratory symptoms such as fever, cough, sputum, and rhinorrhea, as well as digestive symptoms such as diarrhea, vomiting, and abdominal pain in children. In this report, we describe a case of a child with a SARS-CoV-2 infection who presented with epigastric pain and was subsequently diagnosed with acute pancreatitis without any concomitant infections in other organs. The epigastric pain was relieved with goal-directed vigorous fluid therapy for acute pancreatitis for 24 hours, and the serological and radiological findings normalized after two months. Acute pancreatitis should be considered as a differential diagnosis when a child with a history of COVID-19 visits the hospital with epigastric pain.