DOI QR코드

DOI QR Code

Multifactorial Traits of SARS-CoV-2 Cell Entry Related to Diverse Host Proteases and Proteins

  • You, Jaehwan (Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine) ;
  • Seok, Jong Hyeon (Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine) ;
  • Joo, Myungsoo (School of Korean Medicine, Pusan National University) ;
  • Bae, Joon-Yong (Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine) ;
  • Kim, Jin Il (Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine) ;
  • Park, Man-Seong (Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine) ;
  • Kim, Kisoon (Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine)
  • Received : 2021.03.15
  • Accepted : 2021.03.29
  • Published : 2021.05.01

Abstract

The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.

Keywords

References

  1. Alexander, D. J. and Brown, I. H. (2009) History of highly pathogenic avian influenza. Rev. Sci. Tech. 28, 19-38. https://doi.org/10.20506/rst.28.1.1856
  2. Ami, Y., Nagata, N., Shirato, K., Watanabe, R., Iwata, N., Nakagaki, K., Fukushi, S., Saijo, M., Morikawa, S. and Taguchi, F. (2008) Co-infection of respiratory bacterium with severe acute respiratory syndrome coronavirus induces an exacerbated pneumonia in mice. Microbiol. Immunol. 52, 118-127. https://doi.org/10.1111/j.1348-0421.2008.00011.x
  3. Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. and Garry, R. F. (2020) The proximal origin of SARS-CoV-2. Nat. Med. 26, 450-452. https://doi.org/10.1038/s41591-020-0820-9
  4. Baron, J., Tarnow, C., Mayoli-Nussle, D., Schilling, E., Meyer, D., Hammami, M., Schwalm, F., Steinmetzer, T., Guan, Y., Garten, W., Klenk, H. D. and Bottcher-Friebertshauser, E. (2013) Matriptase, HAT, and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses. J. Virol. 87, 1811-1820. https://doi.org/10.1128/JVI.02320-12
  5. Bassi, D. E., Zhang, J., Renner, C. and Klein-Szanto, A. J. (2017) Targeting proprotein convertases in furin-rich lung cancer cells results in decreased in vitro and in vivo growth. Mol. Carcinog. 56, 1182-1188. https://doi.org/10.1002/mc.22550
  6. Batlle, D., Wysocki, J. and Satchell, K. (2020) Soluble angiotensinconverting enzyme 2: a potential approach for coronavirus infection therapy? Clin. Sci. (Lond.) 134, 543-545. https://doi.org/10.1042/cs20200163
  7. Belouzard, S., Chu, V. C. and Whittaker, G. R. (2009) Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc. Natl. Acad. Sci. U.S.A. 106, 5871-5876. https://doi.org/10.1073/pnas.0809524106
  8. Belouzard, S., Madu, I. and Whittaker, G. R. (2010) Elastase-mediated activation of the severe acute respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain. J. Biol. Chem. 285, 22758-22763. https://doi.org/10.1074/jbc.M110.103275
  9. Bertram, S., Glowacka, I., Muller, M. A., Lavender, H., Gnirss, K., Nehlmeier, I., Niemeyer, D., He, Y., Simmons, G., Drosten, C., Soilleux, E. J., Jahn, O., Steffen, I. and Pohlmann, S. (2011) Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J. Virol. 85, 13363-13372. https://doi.org/10.1128/JVI.05300-11
  10. Black, R. A., Rauch, C. T., Kozlosky, C. J., Peschon, J. J., Slack, J. L., Wolfson, M. F., Castner, B. J., Stocking, K. L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K. A., Gerhart, M., Davis, R., Fitzner, J. N., Johnson, R. S., Paxton, R. J., March, C. J. and Cerretti, D. P. (1997) A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 385, 729-733. https://doi.org/10.1038/385729a0
  11. Blaydon, D. C., Biancheri, P., Di, W. L., Plagnol, V., Cabral, R. M., Brooke, M. A., van Heel, D. A., Ruschendorf, F., Toynbee, M., Walne, A., O'Toole, E. A., Martin, J. E., Lindley, K., Vulliamy, T., Abrams, D., J., MacDonald, T. T., Harper, J. I. and Kelsell, D. P. (2011) Inflammatory skin and bowel disease linked to ADAM17 deletion. N. Engl. J. Med. 365, 1502-1508. https://doi.org/10.1056/NEJMoa1100721
  12. Bosch, B. J., Bartelink, W. and Rottier, P. J. (2008) Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide. J. Virol. 82, 8887-8890. https://doi.org/10.1128/JVI.00415-08
  13. Bottcher-Friebertshauser, E., Garten, W., Matrosovich, M. and Klenk, H. D. (2014) The hemagglutinin: a determinant of pathogenicity. Curr. Top. Microbiol. Immunol. 385, 3-34. https://doi.org/10.1007/82_2014_384
  14. Buchrieser, J., Dufloo, J., Hubert, M., Monel, B., Planas, D., Rajah, M. M., Planchais, C., Porrot, F., Guivel-Benhassine, F., Van der Werf, S., Casartelli, N., Mouquet, H., Bruel, T. and Schwartz, O. (2020) Syncytia formation by SARS-CoV-2-infected cells. EMBO J. 39, e106267.
  15. Bugge, T. H., Antalis, T. M. and Wu, Q. (2009) Type II transmembrane serine proteases. J. Biol. Chem. 284, 23177-23181. https://doi.org/10.1074/jbc.R109.021006
  16. Cantin, C., Holguera, J., Ferreira, L., Villar, E. and Munoz-Barroso, I. (2007) Newcastle disease virus may enter cells by caveolae-mediated endocytosis. J. Gen. Virol. 88, 559-569. https://doi.org/10.1099/vir.0.82150-0
  17. Cantuti-Castelvetri, L., Ojha, R., Pedro, L. D., Djannatian, M., Franz, J., Kuivanen, S., van der Meer, F., Kallio, K., Kaya, T., Anastasina, M., Smura, T., Levanov, L., Szirovicza, L., Tobi, A., Kallio-Kokko, H., Osterlund, P., Joensuu, M., Meunier, F. A., Butcher, S. J., Winkler, M. S., Mollenhauer, B., Helenius, A., Gokce, O., Teesalu, T., Hepojoki, J., Vapalahti, O., Stadelmann, C., Balistreri, G. and Simons, M. (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856-860. https://doi.org/10.1126/science.abd2985
  18. Cheng, Y. W., Chao, T. L., Li, C. L., Chiu, M. F., Kao, H. C., Wang, S. H., Pang, Y. H., Lin, C. H., Tsai, Y. M., Lee, W. H., Tao, M. H., Ho, T. C., Wu, P. Y., Jang, L. T., Chen, P. J., Chang, S. Y. and Yeh, S. H. (2020) Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Cell Rep. 33, 108254. https://doi.org/10.1016/j.celrep.2020.108254
  19. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (2020) The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536-544. https://doi.org/10.1038/s41564-020-0695-z
  20. Coutard, B., Valle, C., de Lamballerie, X., Canard, B., Seidah, N. G. and Decroly, E. (2020) The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 176, 104742. https://doi.org/10.1016/j.antiviral.2020.104742
  21. Daly, J. L., Simonetti, B., Klein, K., Chen, K. E., Williamson, M. K., Anton-Plagaro, C., Shoemark, D. K., Simon-Gracia, L., Bauer, M., Hollandi, R., Greber, U. F., Horvath, P., Sessions, R. B., Helenius, A., Hiscox, J. A., Teesalu, T., Matthews, D. A., Davidson, A. D., Collins, B. M., Cullen, P. J. and Yamauchi, Y. (2020) Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370, 861-865 https://doi.org/10.1126/science.abd3072
  22. Danser, A. H. J., Epstein, M. and Batlle, D. (2020) Renin-angiotensin system blockers and the COVID-19 pandemic: at present there is no evidence to abandon renin-angiotensin system blockers. Hypertension 75, 1382-1385. https://doi.org/10.1161/hypertensionaha.120.15082
  23. Das, S., Ravi, V. and Desai, A. (2011) Japanese encephalitis virus interacts with vimentin to facilitate its entry into porcine kidney cell line. Virus Res. 160, 404-408. https://doi.org/10.1016/j.virusres.2011.06.001
  24. de Vries, E., Tscherne, D. M., Wienholts, M. J., Cobos-Jimenez, V., Scholte, F., Garcia-Sastre, A., Rottier, P. J. and de Haan, C. A. (2011) Dissection of the influenza A virus endocytic routes reveals macropinocytosis as an alternative entry pathway. PLoS Pathog. 7, e1001329. https://doi.org/10.1371/journal.ppat.1001329
  25. Delmas, B., Gelfi, J., L'Haridon, R., Vogel, L. K., Sjostrom, H., Noren, O. and Laude, H. (1992) Aminopeptidase N is a major receptor for the entero-pathogenic coronavirus TGEV. Nature 357, 417-420. https://doi.org/10.1038/357417a0
  26. Denison, M. R., Graham, R. L., Donaldson, E. F., Eckerle, L. D. and Baric, R. S. (2011) Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 8, 270-279. https://doi.org/10.4161/rna.8.2.15013
  27. Ding, Y., Wang, H., Shen, H., Li, Z., Geng, J., Han, H., Cai, J., Li, X., Kang, W., Weng, D., Lu, Y., Wu, D., He, L. and Yao, K. (2003) The clinical pathology of severe acute respiratory syndrome (SARS): a report from China. J. Pathol. 200, 282-289. https://doi.org/10.1002/path.1440
  28. Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., Donovan, M., Woolf, B., Robison, K., Jeyaseelan, R., Breitbart, R. E. and Acton, S. (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ. Res. 87, E1-E9.
  29. Drees, L., Konigsmann, T., Jaspers, M., Pflanz, R., Riedel, D. and Schuh, R. (2019) Conserved function of the matriptase-prostasin proteolytic cascade during epithelial morphogenesis. PLoS Genet. 15, e1007882. https://doi.org/10.1371/journal.pgen.1007882
  30. Dusterhoft, S., Hobel, K., Oldefest, M., Lokau, J., Waetzig, G. H., Chalaris, A., Garbers, C., Scheller, J., Rose-John, S., Lorenzen, I. and Grotzinger, J. (2014) A disintegrin and metalloprotease 17 dynamic interaction sequence, the sweet tooth for the human interleukin 6 receptor. J. Biol. Chem. 289, 16336-16348. https://doi.org/10.1074/jbc.M114.557322
  31. Dusterhoft, S., Jung, S., Hung, C. W., Tholey, A., Sonnichsen, F. D., Grotzinger, J. and Lorenzen, I. (2013) Membrane-proximal domain of a disintegrin and metalloprotease-17 represents the putative molecular switch of its shedding activity operated by protein-disulfide isomerase. J. Am. Chem. Soc. 135, 5776-5781. https://doi.org/10.1021/ja400340u
  32. Fackler, O. T. and Peterlin, B. M. (2000) Endocytic entry of HIV-1. Curr. Biol. 10, 1005-1008. https://doi.org/10.1016/S0960-9822(00)00654-0
  33. Ferrario, C. M., Jessup, J., Chappell, M. C., Averill, D. B., Brosnihan, K. B., Tallant, E. A., Diz, D. I. and Gallagher, P. E. (2005) Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 111, 2605-2610. https://doi.org/10.1161/CIRCULATIONAHA.104.510461
  34. Glebov, O. O. (2020) Understanding SARS-CoV-2 endocytosis for COVID-19 drug repurposing. FEBS J. 287, 3664-3671. https://doi.org/10.1111/febs.15369
  35. Glowacka, I., Bertram, S., Muller, M. A., Allen, P., Soilleux, E., Pfefferle, S., Steffen, I., Tsegaye, T. S., He, Y., Gnirss, K., Niemeyer, D., Schneider, H., Drosten, C. and Pohlmann, S. (2011) Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol. 85, 4122-4134. https://doi.org/10.1128/JVI.02232-10
  36. Gold, S., Monaghan, P., Mertens, P. and Jackson, T. (2010) A clathrin independent macropinocytosis-like entry mechanism used by blue-tongue virus-1 during infection of BHK cells. PLoS ONE 5, e11360. https://doi.org/10.1371/journal.pone.0011360
  37. Gomes, C. P., Fernandes, D. E., Casimiro, F., da Mata, G. F., Passos, M. T., Varela, P., Mastroianni-Kirsztajn, G. and Pesquero, J. B. (2020) Cathepsin L in COVID-19: from pharmacological evidences to genetics. Front. Cell. Infect. Microbiol. 10, 589505. https://doi.org/10.3389/fcimb.2020.589505
  38. Grimm, C. and Tang, R. (2020) Could an endo-lysosomal ion channel be the Achilles heel of SARS-CoV2? Cell Calcium 88, 102212. https://doi.org/10.1016/j.ceca.2020.102212
  39. Haga, S., Nagata, N., Okamura, T., Yamamoto, N., Sata, T., Yamamoto, N., Sasazuki, T. and Ishizaka, Y. (2010) TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Res. 85, 551-555. https://doi.org/10.1016/j.antiviral.2009.12.001
  40. Haga, S., Yamamoto, N., Nakai-Murakami, C., Osawa, Y., Tokunaga, K., Sata, T., Yamamoto, N., Sasazuki, T. and Ishizaka, Y. (2008) Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proc. Natl. Acad. Sci. U.S.A. 105, 7809-7814. https://doi.org/10.1073/pnas.0711241105
  41. Hamilton, B. S., Gludish, D. W. and Whittaker, G. R. (2012) Cleavage activation of the human-adapted influenza virus subtypes by matriptase reveals both subtype and strain specificities. J. Virol. 86, 10579-10586. https://doi.org/10.1128/JVI.00306-12
  42. Hamming, I., Timens, W., Bulthuis, M. L., Lely, A. T., Navis, G. and van Goor, H. (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203, 631-637. https://doi.org/10.1002/path.1570
  43. Heurich, A., Hofmann-Winkler, H., Gierer, S., Liepold, T., Jahn, O. and Pohlmann, S. (2014) TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol. 88, 1293-1307. https://doi.org/10.1128/JVI.02202-13
  44. Hoffmann, H. H., Schneider, W. M., Blomen, V. A., Scull, M. A., Hovnanian, A., Brummelkamp, T. R. and Rice, C. M. (2017) Diverse viruses require the calcium transporter SPCA1 for maturation and spread. Cell Host Microbe 22, 460-470.e5. https://doi.org/10.1016/j.chom.2017.09.002
  45. Hoffmann, M., Hofmann-Winkler, H., Smith, J. C., Kruger, N., Arora, P., Sorensen, L. K., Sogaard, O. S., Hasselstrom, J. B., Winkler, M., Hempel, T., Raich, L., Olsson, S., Danov, O., Jonigk, D., Yamazoe, T., Yamatsuta, K., Mizuno, H., Ludwig, S., Noe, F., Kjolby, M., Braun, A., Sheltzer, J. M. and Pohlmann, S. (2021) Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine 65, 103255. https://doi.org/10.1016/j.ebiom.2021.103255
  46. Hoffmann, M., Kleine-Weber, H. and Pohlmann, S. (2020a) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol. Cell 78, 779-784.e5. https://doi.org/10.1016/j.molcel.2020.04.022
  47. Hoffmann, M., Kleine-Weber, H., Schroeder, S., Kruger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Muller, M. A., Drosten, C. and Pohlmann, S. (2020b) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271-280.e8. https://doi.org/10.1016/j.cell.2020.02.052
  48. Hussain, M., Jabeen, N., Raza, F., Shabbir, S., Baig, A. A., Amanullah, A. and Aziz, B. (2020) Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J. Med. Virol. 92, 1580-1586. https://doi.org/10.1002/jmv.25832
  49. Huynh, T., Wang, H. and Luan, B. (2020) In silico exploration of the molecular mechanism of clinically oriented drugs for possibly inhibiting SARS-CoV-2's main protease. J. Phys. Chem. Lett. 11, 4413-4420. https://doi.org/10.1021/acs.jpclett.0c00994
  50. Inoue, Y., Tanaka, N., Tanaka, Y., Inoue, S., Morita, K., Zhuang, M., Hattori, T. and Sugamura, K. (2007) Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J. Virol. 81, 8722-8729. https://doi.org/10.1128/JVI.00253-07
  51. Jarvis, A., Allerston, C. K., Jia, H., Herzog, B., Garza-Garcia, A., Winfield, N., Ellard, K., Aqil, R., Lynch, R., Chapman, C., Hartzoulakis, B., Nally, J., Stewart, M., Cheng, L., Menon, M., Tickner, M., Djordjevic, S., Driscoll, P. C., Zachary, I. and Selwood, D. L. (2010) Small molecule inhibitors of the neuropilin-1 vascular endothelial growth factor A (VEGF-A) interaction. J. Med. Chem. 53, 2215-2226. https://doi.org/10.1021/jm901755g
  52. Jia, H. P., Look, D. C., Tan, P., Shi, L., Hickey, M., Gakhar, L., Chappell, M. C., Wohlford-Lenane, C. and McCray, P. B., Jr. (2009) Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 297, L84-L96. https://doi.org/10.1152/ajplung.00071.2009
  53. Kalin, S., Amstutz, B., Gastaldelli, M., Wolfrum, N., Boucke, K., Havenga, M., DiGennaro, F., Liska, N., Hemmi, S. and Greber, U. F. (2010) Macropinocytotic uptake and infection of human epithelial cells with species B2 adenovirus type 35. J. Virol. 84, 5336-5350. https://doi.org/10.1128/JVI.02494-09
  54. Kam, Y. W., Okumura, Y., Kido, H., Ng, L. F., Bruzzone, R. and Altmeyer, R. (2009) Cleavage of the SARS coronavirus spike glycoprotein by airway proteases enhances virus entry into human bronchial epithelial cells in vitro. PLoS ONE 4, e7870. https://doi.org/10.1371/journal.pone.0007870
  55. Kato, M., Hashimoto, T., Shimomura, T., Kataoka, H., Ohi, H. and Kitamura, N. (2012) Hepatocyte growth factor activator inhibitor type 1 inhibits protease activity and proteolytic activation of human airway trypsin-like protease. J. Biochem. 151, 179-187. https://doi.org/10.1093/jb/mvr131
  56. Kawabata, K., Hagio, T. and Matsuoka, S. (2002) The role of neutrophil elastase in acute lung injury. Eur. J. Pharmacol. 451, 1-10. https://doi.org/10.1016/S0014-2999(02)02182-9
  57. Kim, J. K., Fahad, A. M., Shanmukhappa, K. and Kapil, S. (2006) Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10. J. Virol. 80, 689-696. https://doi.org/10.1128/JVI.80.2.689-696.2006
  58. Kleine-Weber, H., Elzayat, M. T., Hoffmann, M. and Pohlmann, S. (2018) Functional analysis of potentiall cleavage sites in the MERS-coronavirus spike protein. Sci. Rep. 8, 16597. https://doi.org/10.1038/s41598-018-34859-w
  59. Korkmaz, B., Lesner, A., Marchand-Adam, S., Moss, C. and Jenne, D. E. (2020) Lung protection by cathepsin C inhibition: a new hope for COVID-19 and ARDS? J. Med. Chem. 63, 13258-13265. https://doi.org/10.1021/acs.jmedchem.0c00776
  60. Koudelka, K. J., Destito, G., Plummer, E. M., Trauger, S. A., Siuzdak, G. and Manchester, M. (2009) Endothelial targeting of cowpea mosaic virus (CPMV) via surface vimentin. PLoS Pathog. 5, e1000417. https://doi.org/10.1371/journal.ppat.1000417
  61. Kuba, K., Imai, Y. and Penninger, J. M. (2006) Angiotensin-converting enzyme 2 in lung diseases. Curr. Opin. Pharmacol. 6, 271-276. https://doi.org/10.1016/j.coph.2006.03.001
  62. Lai, Z. W., Hanchapola, I., Steer, D. L. and Smith, A. I. (2011) Angiotensin-converting enzyme 2 ectodomain shedding cleavagesite identification: determinants and constraints. Biochemistry 50, 5182-5194. https://doi.org/10.1021/bi200525y
  63. Lambert, D. W., Yarski, M., Warner, F. J., Thornhill, P., Parkin, E. T., Smith, A. I., Hooper, N. M. and Turner, A. J. (2005) Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J. Biol. Chem. 280, 30113-30119. https://doi.org/10.1074/jbc.M505111200
  64. Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L. and Wang, X. (2020) Structure of the SARSCoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215-220. https://doi.org/10.1038/s41586-020-2180-5
  65. Le Coupanec, A., Desforges, M., Meessen-Pinard, M., Dube, M., Day, R., Seidah, N. G. and Talbot, P. J. (2015) Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system. PLoS Pathog. 11, e1005261. https://doi.org/10.1371/journal.ppat.1005261
  66. Li, F. (2016) Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol. 3, 237-261. https://doi.org/10.1146/annurev-virology-110615-042301
  67. Li, F., Berardi, M., Li, W., Farzan, M., Dormitzer, P. R. and Harrison, S. C. (2006) Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J. Virol. 80, 6794-6800. https://doi.org/10.1128/JVI.02744-05
  68. Li, M. Y., Li, L., Zhang, Y. and Wang, X. S. (2020) Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty 9, 45. https://doi.org/10.1186/s40249-020-00662-x
  69. Li, W., Moore, M. J., Vasilieva, N., Sui, J., Wong, S. K., Berne, M. A., Somasundaran, M., Sullivan, J. L., Luzuriaga, K., Greenough, T. C., Choe, H. and Farzan, M. (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426, 450-454. https://doi.org/10.1038/nature02145
  70. List, K., Bugge, T. H. and Szabo, R. (2006) Matriptase: potent proteolysis on the cell surface. Mol. Med. 12, 1-7. https://doi.org/10.2119/2006-00022.List
  71. Liu, P. P., Blet, A., Smyth, D. and Li, H. (2020) The science underlying COVID-19: implications for the cardiovascular system. Circulation 142, 68-78. https://doi.org/10.1161/CIRCULATIONAHA.120.047549
  72. Lu, G., Hu, Y., Wang, Q., Qi, J., Gao, F., Li, Y., Zhang, Y., Zhang, W., Yuan, Y., Bao, J., Zhang, B., Shi, Y., Yan, J. and Gao, G. F. (2013) Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 500, 227-231. https://doi.org/10.1038/nature12328
  73. Luczo, J. M., Stambas, J., Durr, P. A., Michalski, W. P. and Bingham, J. (2015) Molecular pathogenesis of H5 highly pathogenic avian influenza: the role of the haemagglutinin cleavage site motif. Rev. Med. Virol. 25, 406-430. https://doi.org/10.1002/rmv.1846
  74. Matsushima, R., Takahashi, A., Nakaya, Y., Maezawa, H., Miki, M., Nakamura, Y., Ohgushi, F. and Yasuoka, S. (2006) Human airway trypsin-like protease stimulates human bronchial fibroblast proliferation in a protease-activated receptor-2-dependent pathway. Am. J. Physiol. Lung Cell. Mol. Physiol. 290, L385- L395. https://doi.org/10.1152/ajplung.00098.2005
  75. Matsuyama, S. (2011) Protease-dependent cell entry mechanism of coronaviruses. Uirusu 61, 109-116. https://doi.org/10.2222/jsv.61.109
  76. Matsuyama, S., Nagata, N., Shirato, K., Kawase, M., Takeda, M. and Taguchi, F. (2010) Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J. Virol. 84, 12658-12664. https://doi.org/10.1128/JVI.01542-10
  77. Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., Nagata, N., Sekizuka, T., Katoh, H., Kato, F., Sakata, M., Tahara, M., Kutsuna, S., Ohmagari, N., Kuroda, M., Suzuki, T., Kageyama, T. and Takeda, M. (2020) Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. U.S.A. 117, 7001-7003. https://doi.org/10.1073/pnas.2002589117
  78. Matsuyama, S., Ujike, M., Morikawa, S., Tashiro, M. and Taguchi, F. (2005) Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc. Natl. Acad. Sci. U.S.A. 102, 12543-12547. https://doi.org/10.1073/pnas.0503203102
  79. Mbikay, M., Sirois, F., Yao, J., Seidah, N. G. and Chretien, M. (1997) Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br. J. Cancer 75, 1509-1514. https://doi.org/10.1038/bjc.1997.258
  80. Menachery, V. D., Dinnon, K. H., 3rd, Yount, B. L., Jr., McAnarney, E. T., Gralinski, L. E., Hale, A., Graham, R. L., Scobey, T., Anthony, S. J., Wang, L., Graham, B., Randell, S. H., Lipkin, W. I. and Baric, R. S. (2020) Trypsin treatment unlocks barrier for zoonotic bat coronavirus infection. J. Virol. 94, e01774-19.
  81. Millet, J. K. and Whittaker G. R. (2015) Host cell proteases: critical determinants of coronavirus tropism and pathogenesis. Virus Res. 202, 120-134. https://doi.org/10.1016/j.virusres.2014.11.021
  82. Millet, J. K. and Whittaker, G. R. (2014) Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. U.S.A. 111, 15214-15219. https://doi.org/10.1073/pnas.1407087111
  83. Mizuiri, S. and Ohashi, Y. (2015) ACE and ACE2 in kidney disease. World J. Nephrol. 4, 74-82. https://doi.org/10.5527/wjn.v4.i1.74
  84. Monteil, V., Kwon, H., Prado, P., Hagelkruys, A., Wimmer, R. A., Stahl, M., Leopoldi, A., Garreta, E., Hurtado Del Pozo, C., Prosper, F., Romero, J. P., Wirnsberger, G., Zhang, H., Slutsky, A. S., Conder, R., Montserrat, N., Mirazimi, A. and Penninger, J. M. (2020) Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 181, 905-913.e7. https://doi.org/10.1016/j.cell.2020.04.004
  85. Mor-Vaknin, N., Punturieri, A., Sitwala, K. and Markovitz, D. M. (2003) Vimentin is secreted by activated macrophages. Nat. Cell Biol. 5, 59-63. https://doi.org/10.1038/ncb898
  86. Munster, V. J., Schrauwen, E. J., de Wit, E., van den Brand, J. M., Bestebroer, T. M., Herfst, S., Rimmelzwaan, G. F., Osterhaus, A. D. and Fouchier, R. A. (2010) Insertion of a multi-basic cleavage motif into the hemagglutinin of a low-pathogenic avian influenza H6N1 virus induces a highly pathogenic phenotype. J. Virol. 84, 7953-7960. https://doi.org/10.1128/JVI.00449-10
  87. Murza, A., Dion, S. P., Boudreault, P. L., Desilets, A., Leduc, R. and Marsault, E. (2020) Inhibitors of type II transmembrane serine proteases in the treatment of diseases of the respiratory tract - a review of patent literature. Expert Opin. Ther. Pat. 30, 807-824. https://doi.org/10.1080/13543776.2020.1817390
  88. Mwenda, M., Saasa, N., Sinyange, N., Busby., G., Chipimo, P. J., Hendry, J., Kapona, O., Yingst, S., Hines, J. Z., Minchella, P., Simulundu, E., Changula, K., Nalubamba, K. S., Sawa, H., Kajihara, M., Yamagishi, J., Kapin'a, M., Kapata, N., Fwoloshi, S., Zulu, P., Mulenga, L. B., Agolory, S., Mukonka, V. and Bridges, D. J. (2020) Detection of B.1.351 SARS-CoV-2 variant strain - Zambia, December 2020. MMWR Morb. Mortal. Wkly. Rep. 70, 280-282.
  89. Nakayama, K. (1997) Furin: a mammalian subtilisin/Kex2p-like endoprotease involved in processing of a wide variety of precursor proteins. Biochem. J. 327, 625-635. https://doi.org/10.1042/bj3270625
  90. Nedelkov, D. (2008) Population proteomics: investigation of protein diversity in human populations. Proteomics 8, 779-786. https://doi.org/10.1002/pmic.200700501
  91. Nomura, R. (2005) Caveolar endocytosis and virus entry. Uirusu 55, 19-26. https://doi.org/10.2222/jsv.55.19
  92. Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., Guo, L., Guo, R., Chen, T., Hu, J., Xiang, Z., Mu, Z., Chen, X., Chen, J., Hu, K., Jin, Q., Wang, J. and Qian, Z. (2020) Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620. https://doi.org/10.1038/s41467-020-15562-9
  93. Palau, V., Riera, M. and Soler, M. J. (2020) ADAM17 inhibition may exert a protective effect on COVID-19. Nephrol. Dial. Transplant. 35, 1071-1072. https://doi.org/10.1093/ndt/gfaa093
  94. Perico, L., Benigni, A. and Remuzzi, G. (2020) Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. Nephron 144, 213-221. https://doi.org/10.1159/000507305
  95. Qian, Z., Dominguez, S. R. and Holmes, K. V. (2013) Role of the spike glycoprotein of human Middle East respiratory syndrome coronavirus (MERS-CoV) in virus entry and syncytia formation. PLoS ONE 8, e76469. https://doi.org/10.1371/journal.pone.0076469
  96. Ramos, I., Stamatakis, K., Oeste, C. L. and Perez-Sala, D. (2020) Vimentin as a multifaceted player and potential therapeutic target in viral infections. Int. J. Mol. Sci. 21, 4675. https://doi.org/10.3390/ijms21134675
  97. Roth, L., Prahst, C., Ruckdeschel, T., Savant, S., Westrom, S., Fantin, A., Riedel, M., Heroult, M., Ruhrberg, C. and Augustin, H. G. (2016) Neuropilin-1 mediates vascular permeability independently of vascular endothelial growth factor receptor-2 activation. Sci. Signal. 9, ra42. https://doi.org/10.1126/scisignal.aad3812
  98. Sahebnasagh, A., Saghafi, F., Safdari, M., Khataminia, M., Sadremomtaz, A., Talaei, Z., RezaiGhaleno, H., Bagheri, M., Habtemariam, S. and Avan, R. (2020) Neutrophil elastase inhibitor (sivelestat) may be a promising therapeutic option for management of acute lung injury/acute respiratory distress syndrome or disseminated intravascular coagulation in COVID-19. J. Clin. Pharm. Ther. 45, 1515-1519. https://doi.org/10.1111/jcpt.13251
  99. Sales, K. U., Hobson, J. P., Wagenaar-Miller, R., Szabo, R., Rasmussen, A. L., Bey, A., Shah, M. F., Molinolo, A. A. and Bugge, T. H. (2011) Expression and genetic loss of function analysis of the HAT/DESC cluster proteases TMPRSS11A and HAT. PLoS ONE 6, e23261. https://doi.org/10.1371/journal.pone.0023261
  100. Schafer, G., Graham, L. M., Lang, D. M., Blumenthal, M. J., Bergant Marusic, M. and Katz, A. A. (2017) Vimentin modulates infectious internalization of human papillomavirus 16 pseudovirions. J. Virol. 91, e00307-17.
  101. Scheibner, D., Ulrich, R., Fatola, O. I., Graaf, A., Gischke, M., Salaheldin, A. H., Harder, T. C., Veits, J., Mettenleiter, T. C. and Abdelwhab, E. M. (2019) Variable impact of the hemagglutinin polybasic cleavage site on virulence and pathogenesis of avian influenza H7N7 virus in chickens, turkeys and ducks. Sci. Rep. 9, 11556. https://doi.org/10.1038/s41598-019-47938-3
  102. Schreiber, B., Patel, A. and Verma, A. (2020) Shedding light on COVID-19: ADAM17 the missing link? Am. J. Ther. doi: 10.1097/MJT.0000000000001226 [Online ahead of print].
  103. Seidah, N. G. and Prat, A. (2012) The biology and therapeutic targeting of the proprotein convertases. Nat. Rev. Drug Discov. 11, 367-383. https://doi.org/10.1038/nrd3699
  104. Seidah, N. G., and Chretien, M. (1999) Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 848, 45-62. https://doi.org/10.1016/S0006-8993(99)01909-5
  105. Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A. and Li, F. (2020a) Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221-224. https://doi.org/10.1038/s41586-020-2179-y
  106. Shang, J., Wan, Y., Luo, C., Ye, G., Geng, Q., Auerbach, A. and Li, F. (2020b) Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. U.S.A. 117, 11727-11734. https://doi.org/10.1073/pnas.2003138117
  107. Shema Mugisha, C., Vuong, H. R., Puray-Chavez, M., Bailey, A. L., Fox, J. M., Chen, R. E., Wessel, A. W., Scott, J. M., Harastani, H. H., Boon, A., Shin, H. and Kutluay, S. B. (2020) A simplified quantitative real-time PCR assay for monitoring SARS-CoV-2 growth in cell culture. mSphere 5, e00658-20.
  108. Shi, J. Y., Pan, H. Y., Liu, K., Pan, M. and Si, G. J. (2020) Expression of ectopic trypsin in atherosclerotic plaques and the effects of aprotinin on plaque stability. Arch. Biochem. Biophys. 690, 108460. https://doi.org/10.1016/j.abb.2020.108460
  109. Shirato, K., Kawase, M. and Matsuyama, S. (2013) Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J. Virol. 87, 12552-12561. https://doi.org/10.1128/JVI.01890-13
  110. Shrimp, J. H., Kales, S. C., Sanderson, P. E., Simeonov, A., Shen, M. and Hall, M. D. (2020) An enzymatic TMPRSS2 assay for assessment of clinical candidates and discovery of inhibitors as potential treatment of COVID-19. ACS Pharmacol. Transl. Sci. 3, 997-1007 https://doi.org/10.1021/acsptsci.0c00106
  111. Shulla, A., Heald-Sargent, T., Subramanya, G., Zhao, J., Perlman, S. and Gallagher, T. (2011) A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol. 85, 873-882. https://doi.org/10.1128/JVI.02062-10
  112. Sieczkarski, S. B. and Whittaker, G. R. (2005) Characterization of the host cell entry of filamentous influenza virus. Arch. Virol. 150, 1783-1796. https://doi.org/10.1007/s00705-005-0558-1
  113. South, A. M., Tomlinson, L., Edmonston, D., Hiremath, S. and Sparks, M. A. (2020) Controversies of renin-angiotensin system inhibition during the COVID-19 pandemic. Nat. Rev. Nephrol. 16, 305-307. https://doi.org/10.1038/s41581-020-0279-4
  114. Stip, E., Rizvi, T. A., Mustafa, F., Javaid, S., Aburuz, S., Ahmed, N. N., Abdel Aziz, K., Arnone, D., Subbarayan, A., Al Mugaddam, F. and Khan, G. (2020) The large action of chlorpromazine: translational and transdisciplinary considerations in the face of COVID-19. Front. Pharmacol. 11, 577678. https://doi.org/10.3389/fphar.2020.577678
  115. Suguitan, A. L., Jr., Matsuoka, Y., Lau, Y. F., Santos, C. P., Vogel, L., Cheng, L. I., Orandle, M. and Subbarao, K. (2012) The multi-basic cleavage site of the hemagglutinin of highly pathogenic A/Vietnam/1203/2004 (H5N1) avian influenza virus acts as a virulence factor in a host-specific manner in mammals. J. Virol. 86, 2706-2714. https://doi.org/10.1128/JVI.05546-11
  116. Sun, X., Yau, V. K., Briggs, B. J. and Whittaker, G. R. (2005) Role of clathrin-mediated endocytosis during vesicular stomatitis virus entry into host cells. Virology 338, 53-60. https://doi.org/10.1016/j.virol.2005.05.006
  117. Sureda, A., Alizadeh, J., Nabavi, S. F., Berindan-Neagoe, I., Cismaru, C. A., Jeandet, P., Los, M. J., Clementi, E., Nabavi, S. M. and Ghavami, S. (2020) Endoplasmic reticulum as a potential therapeutic target for covid-19 infection management? Eur. J. Pharmacol. 882, 173288. https://doi.org/10.1016/j.ejphar.2020.173288
  118. Tada, T., Dcosta, B. M., Samanovic-Golden, M., Herati, R. S., Cornelius, A., Mulligan, M. J. and Landau, N. R. (2021) Neutralization of viruses with European, South African, and United States SARS-CoV-2 variant spike proteins by convalescent sera and BNT162b2 mRNA vaccine-elicited antibodies. bioRxiv doi: 10.1101/2021.02.05.430003 [Preprint].
  119. Teesalu, T., Sugahara, K. N., Kotamraju, V. R. and Ruoslahti, E. (2009) C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. U.S.A. 106, 16157-16162. https://doi.org/10.1073/pnas.0908201106
  120. Thomas, G. (2002) Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nat. Rev. Mol. Cell Biol. 3, 753-766. https://doi.org/10.1038/nrm934
  121. Thul, P. J., Akesson, L., Wiking, M., Mahdessian, D., Geladaki, A., AitBlal, H., Alm, T., Asplund, A., Bjork, L., Breckels, L. M., Backstrom, A., Danielsson, F., Fagerberg, L., Fall, J., Gatto, L., Gnann, C., Hober, S., Hjelmare, M., Johansson, F., Lee, S., Lindskog, C., Mulder, J., Mulvey, C. M., Nilsson, P., Oksvold, P., Rockberg, J., Schutten, R., Schwenk, J. M., Sivertsson, A., Sjostedt, E., Skogs, M., Stadler, C., Sullivan, D. P., Tegel, H., Winsnes, C., Zhang, C., Zwahlen, M., Mardinoglu, A., Ponten, F., von Feilitzen, K., Lilley, K. S., Uhlen, M. and Lundberg, E. (2017) A subcellular map of the human proteome. Science 356, eaal3321. https://doi.org/10.1126/science.aal3321
  122. Tian, F., Tong, B., Sun, L., Shi, S., Zheng, B., Wang, Z., Dong, X. and Zheng, P. (2021) Mutation N501Y in RBD of spike protein strengthens the interaction between COVID-19 and its receptor ACE2. bioRxiv doi: 10.1101/2021.02.14.431117 [Preprint].
  123. To, K. F. and Lo, A. W. (2004) Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensinconverting enzyme 2 (ACE2). J. Pathol. 203, 740-743. https://doi.org/10.1002/path.1597
  124. Vijay, R. (2020) MERS Coronavirus Methods and Protocols. Part of the Methods in Molecular Biology book series. pp. 21-37. Springer.
  125. Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T. and Veesler, D. (2020) Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281-292. https://doi.org/10.1016/j.cell.2020.02.058
  126. Wang, H., Yang, P., Liu, K., Guo, F., Zhang, Y., Zhang, G. and Jiang, C. (2008) SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 18, 290-301. https://doi.org/10.1038/cr.2008.15
  127. Wang, Q., Qiu, Y., Li, J. Y., Zhou, Z. J., Liao, C. H. and Ge, X. Y. (2020a) A unique protease cleavage site predicted in the spike protein of the novel pneumonia coronavirus (2019-nCoV) potentially related to viral transmissibility. Virol. Sin. 35, 337-339. https://doi.org/10.1007/s12250-020-00212-7
  128. Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J. and Qi, J. (2020b) Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell 181, 894-904. https://doi.org/10.1016/j.cell.2020.03.045
  129. Wibmer, C. K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Oosthuysen, B., Lambson, B. E., de Oliveira, T., Vermeulen, M., van der Berg, K., Rossouw, T., Boswell, M., Ueckermann, V., Meiring, S., von Gottberg, A., Cohen, C., Morris, L., Bhiman, J. N. and Moore, P. L. (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. doi: 10.1038/s41591-021-01285-x [Online ahead of print].
  130. Worldometers.info (2021) Coronavirus Update. Available from: https://www.worldometers.info/coronavirus/ [accessed 2021 Mar 25].
  131. Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C. L., Abiona, O., Graham, B. S. and McLellan, J. S. (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260-1263. https://doi.org/10.1126/science.abb2507
  132. Wu, F., Zhao, S., Yu, B., Chen, Y. M., Wang, W., Song, Z. G., Hu, Y., Tao, Z. W., Tian, J. H., Pei, Y. Y., Yuan, M. L., Zhang, Y. L., Dai, F. H., Liu, Y., Wang, Q. M., Zheng, J. J., Xu, L., Holmes, E. C. and Zhang, Y. Z. (2020) A new coronavirus associated with human respiratory disease in China. Nature 579, 265-269. https://doi.org/10.1038/s41586-020-2008-3
  133. Wu, J., Deng, W., Li, S. and Yang, X. (2021) Advances in research on ACE2 as a receptor for 2019-nCoV. Cell. Mol. Life Sci. 78, 531-544. https://doi.org/10.1007/s00018-020-03611-x
  134. Wysocki, J., Ye, M., Rodriguez, E., Gonzalez-Pacheco, F. R., Barrios, C., Evora, K., Schuster, M., Loibner, H., Brosnihan, K., B., Ferrario, C. M., Penninger, J. M. and Batlle, D. (2010) Targeting the degradation of angiotensin II with recombinant angiotensinconverting enzyme 2: prevention of angiotensin II-dependent hypertension. Hypertension 55, 90-98. https://doi.org/10.1161/hypertensionaha.109.138420
  135. Xia, S., Liu, M., Wang, C., Xu, W., Lan, Q., Feng, S., Qi, F., Bao, L., Du, L., Liu, S., Qin, C., Sun, F., Shi, Z., Zhu, Y., Jiang, S. and Lu, L. (2020) Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 30, 343-355. https://doi.org/10.1038/s41422-020-0305-x
  136. Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y. and Zhou, Q. (2020) Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 367, 1444-1448. https://doi.org/10.1126/science.abb2762
  137. Yang, Y., Du, L., Liu, C., Wang, L., Ma, C., Tang, J., Baric, R. S., Jiang, S. and Li, F. (2014) Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc. Natl. Acad. Sci. U.S.A. 111, 12516-12521. https://doi.org/10.1073/pnas.1405889111
  138. Yao, Y. X., Ren, J., Heinen, P., Zambon, M. and Jones, I. M. (2004) Cleavage and serum reactivity of the severe acute respiratory syndrome coronavirus spike protein. J. Infect. Dis. 190, 91-98. https://doi.org/10.1086/421280
  139. Yasuoka, S., Ohnishi, T., Kawano, S., Tsuchihashi, S., Ogawara, M., Masuda, K., Yamaoka, K., Takahashi, M. and Sano, T. (1997) Purification, characterization, and localization of a novel trypsin-like protease found in the human airway. Am. J. Respir. Cell Mol. Biol. 16, 300-308. https://doi.org/10.1165/ajrcmb.16.3.9070615
  140. Yeager, C. L., Ashmun, R. A., Williams, R. K., Cardellichio, C. B., Shapiro, L. H., Look, A. T. and Holmes, K. V. (1992) Human aminopeptidase N is a receptor for human coronavirus 229E. Nature 357, 420-422. https://doi.org/10.1038/357420a0
  141. Yu, Y. T., Chien, S. C., Chen, I. Y., Lai, C. T., Tsay, Y. G., Chang, S. C., and Chang, M. F. (2016) Surface vimentin is critical for the cell entry of SARS-CoV. J. Biomed. Sci. 23, 14. https://doi.org/10.1186/s12929-016-0234-7
  142. Yuan, Y., Cao, D., Zhang, Y., Ma, J., Qi, J., Wang, Q., Lu, G., Wu, Y., Yan, J., Shi, Y., Zhang, X. and Gao, G. F. (2017) Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun. 8, 15092. https://doi.org/10.1038/ncomms15092
  143. Yurkovetskiy, L., Wang, X., Pascal, K. E., Tomkins-Tinch, C., Nyalile, T. P., Wang, Y., Baum, A., Diehl, W. E., Dauphin, A., Carbone, C., Veinotte, K., Egri, S. B., Schaffner, S. F., Lemieux, J. E., Munro, J. B., Rafique, A., Barve, A., Sabeti, P. C., Kyratsous, C. A., Dudkina, N. V., Shen, K. and Luban, J. (2020) Structural and functional analysis of the D614G SARS-CoV-2 spike protein variant. Cell 183, 739-751.e8. https://doi.org/10.1016/j.cell.2020.09.032
  144. Zhang, J., Cai, Y., Xiao, T., Lu, J., Peng, H., Sterling, S. M., Walsh, R. M., Jr., Rits-Volloch, S., Zhu, H., Woosley, A. N., Yang, W., Sliz, P. and Chen, B. (2021) Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science doi: 10.1126/science.abf2303 [Online ahead of print].
  145. Zhao, Y., Zhao, Z., Wang, Y., Zhou, Y., Ma, Y. and Zuo, W. (2020) Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. Am. J. Respir. Crit. Care Med. 202, 756-759. https://doi.org/10.1164/rccm.202001-0179le
  146. Zhou, F., Yu, T., Du, R., Fan, G.,Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H. and Cao, B. (2020a) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054-1062. https://doi.org/10.1016/s0140-6736(20)30566-3
  147. Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., Zheng, X. S., Zhao, K., Chen, Q. J., Deng, F., Liu, L. L., Yan, B., Zhan, F. X., Wang, Y. Y., Xiao, G. F. and Shi, Z. L. (2020b) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270-273. https://doi.org/10.1038/s41586-020-2012-7
  148. Zipeto, D., Palmeira, J., Arganaraz, G. A. and Arganaraz, E. R. (2020) ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19. Front. Immunol. 11, 576745. https://doi.org/10.3389/fimmu.2020.576745