• 제목/요약/키워드: SARIMA Model

검색결과 49건 처리시간 0.025초

SARIMA모형을 이용한 철도여객 단기수송수요 예측 (Short-term Railway Passenger Demand Forecasting by SARIMA Model)

  • 노윤승;도명식
    • 한국ITS학회 논문지
    • /
    • 제14권4호
    • /
    • pp.18-26
    • /
    • 2015
  • 본 연구에서는 새마을 무궁화 열차의 주요 5개노선(경부선, 호남선, 전라선, 장항선, 중앙선)의 단기수송수요의 예측모형 선정방안을 제시하고 유용성을 확인하기 위한 검증결과를 제시하였다. 분석을 위해 계절별 특성이 반영된 SARIMA 모형을 이용하였으며, 주중/주말 통행 특성 및 대체근무제 등과 같은 공휴일 특성을 반영하고자 각 노선별 주중/주말 일평균 모형을 각각 구축하였다. 또한 모형의 신뢰도를 높이기 위해 EXPO 개최, 새로운 노선의 개통 등 노선별 개입요소를 고려하여 수송수요의 예측모형에 반영하였으며 모형 예측력의 검증을 통해 정도 높은 모형을 구축하였음을 확인하였다. 본 연구를 통해 개발된 모형은 열차 노선별 단기운행계획 수립을 위한 기초자료로 활용될 수 있을 것으로 기대된다.

SARIMA모형을 이용한 코로나19 확진자수 예측 (Prediction of Covid-19 confirmed number of cases using SARIMA model)

  • 김재호;김장영
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.58-63
    • /
    • 2022
  • 코로나19의 일일 확진자 수는 천명 후반대에서 2천명대를 유지하고 있으며, 백신접종률이 증가함에도 불구하고 확진자수가 쉽게 줄어들지 않는 상황이다. 변이바이러스는 계속해서 등장하고, 현재는 뮤 변이 바이러스까지 국내에 유입되었다. 본 논문은 코로나 예방전략을 위해 SARIMA 모델을 통해 코로나19 국내 확진자 수를 예측한다. ADF Test와 KPSS Test를 통해 데이터에 추세와 계절성이 있음을 확인한다. SARIMA(p,d,q)(P,D,Q,S)의 p, d, q, P, D, Q의 값은 모형 차수결정 정리로 파라미터를 추출한다. ACF와 PACF를 통해 p, q 파라미터를 추론한다. 차분, 로그변환, 계절성제거 등을 통해 데이터를 정상성 형태로 변환하고, 도식화 하여 파라미터를 도출하고, 계절성이 있다면 S를 정하고, SARIMA P,D,Q를 정하고, 계절성을 제외한 차수에 대해 ACF와 PACF를 보고 ARIMA p,d,q를 정한다.

SARIMA 모델을 기반으로 한 선로 이용률의 동적 임계값 학습 기법 (Learning Algorithm of Dynamic Threshold in Line Utilization based SARIMA model)

  • 조강홍;안성진;정진욱
    • 정보처리학회논문지C
    • /
    • 제9C권6호
    • /
    • pp.841-846
    • /
    • 2002
  • 이 논문에서는 네트워크의 QoS에 가장 큰 영향을 미치는 네트워크 선로 이용률의과거 데이터를 기반으로 단기간 예측과 계절성(seasonality) 예측에 적합한 계절자기회귀이동평균(SARIMA : seasonal ARIMA) 모형을 적용하여 네트워크 특성을 고려한 동적인 임계값을 학습하는 알고리즘을 제시하였다. 이 기법을 통해 선로 이용률의 임계값은 네트워크환경과 시간에 따라 동적으로 변경되며, 확률을 근거로 그 신뢰성을 제공할 수 있다. 또한,실제 환경을 통하여 제시한 모델의 적합성 여부를 평가하였으며, 알고리즘의 성능을 실험하였다. 네트워크 관리자들은 이 알고리즘을 통하여 고정 임계값이 가지는 단점을 극복할 수있을 것이며, 관리 행위의 효율성을 높일 수 있을 것이다.

SARIMA 알고리즘을 이용한 교통량 보정 및 예측 (A Study on the Traffic Volume Correction and Prediction Using SARIMA Algorithm)

  • 한대철;이동우;정도영
    • 한국ITS학회 논문지
    • /
    • 제20권6호
    • /
    • pp.1-13
    • /
    • 2021
  • 본 연구에서는 도로교통분야의 계획, 설계, 유지관리, 연구 등 다양한 목적으로 활용되고 있는 교통량 데이터의 정확도 확보를 위해 시계열 분석 기법을 적용하여 교통량 데이터의 보정 및 예측을 수행하였다. 기존 알고리즘의 경우 주기성 및 계절성이 강하거나 불규칙한 데이터에 한계를 보이고 있어 교통량 데이터와 같은 자료에 적용하기에는 한계가 있다. 이러한 한계점을 극복하고 보완하기 위해 ARIMA 모형에 자기상관 모형인 SAR(Seasonal Auto Regressive)과 계절 이동평균 모형인 SMA(Seasonal Moving Average)가 결합된 분석 기법인 SARIMA 모형을 적용하였다. 분석결과 최적 파라미터 조합인 SARIMA(4,1,3)(4,0,3) 12 모형을 활용한 교통량 예측 결과 평균 85% 정도의 우수한 성능을 보였다. 본 연구를 통해서 교통량 데이터의 결측 발생 시 교통량 보정 및 예측의 정확도를 높일 수 있으며, 교통량 데이터 외에도 계절성에 영향을 받는 시계열 데이터에 적용이 가능하다.

SARIMA 모형을 이용한 태양광 발전량 예보 모형 구축 (Solar Power Generation Forecast Model Using Seasonal ARIMA)

  • 이동현;정아현;김진영;김창기;김현구;이영섭
    • 한국태양에너지학회 논문집
    • /
    • 제39권3호
    • /
    • pp.59-66
    • /
    • 2019
  • New and renewable energy forecasts are key technology to reduce the annual operating cost of new and renewable facilities, and accuracy of forecasts is paramount. In this study, we intend to build a model for the prediction of short-term solar power generation for 1 hour to 3 hours. To this end, this study applied two time series technique, ARIMA model without considering seasonality and SARIMA model with considering seasonality, comparing which technique has better predictive accuracy. Comparing predicted errors by MAE measures of solar power generation for 1 hour to 3 hours at four locations, the solar power forecast model using ARIMA was better in terms of predictive accuracy than the solar power forecast model using SARIMA. On the other hand, a comparison of predicted error by RMSE measures resulted in a solar power forecast model using SARIMA being better in terms of predictive accuracy than a solar power forecast model using ARIMA.

Time-Series Estimation based AI Algorithm for Energy Management in a Virtual Power Plant System

  • Yeonwoo LEE
    • 한국인공지능학회지
    • /
    • 제12권1호
    • /
    • pp.17-24
    • /
    • 2024
  • This paper introduces a novel approach to time-series estimation for energy load forecasting within Virtual Power Plant (VPP) systems, leveraging advanced artificial intelligence (AI) algorithms, namely Long Short-Term Memory (LSTM) and Seasonal Autoregressive Integrated Moving Average (SARIMA). Virtual power plants, which integrate diverse microgrids managed by Energy Management Systems (EMS), require precise forecasting techniques to balance energy supply and demand efficiently. The paper introduces a hybrid-method forecasting model combining a parametric-based statistical technique and an AI algorithm. The LSTM algorithm is particularly employed to discern pattern correlations over fixed intervals, crucial for predicting accurate future energy loads. SARIMA is applied to generate time-series forecasts, accounting for non-stationary and seasonal variations. The forecasting model incorporates a broad spectrum of distributed energy resources, including renewable energy sources and conventional power plants. Data spanning a decade, sourced from the Korea Power Exchange (KPX) Electrical Power Statistical Information System (EPSIS), were utilized to validate the model. The proposed hybrid LSTM-SARIMA model with parameter sets (1, 1, 1, 12) and (2, 1, 1, 12) demonstrated a high fidelity to the actual observed data. Thus, it is concluded that the optimized system notably surpasses traditional forecasting methods, indicating that this model offers a viable solution for EMS to enhance short-term load forecasting.

Lactation milk yield prediction in primiparous cows on a farm using the seasonal auto-regressive integrated moving average model, nonlinear autoregressive exogenous artificial neural networks and Wood's model

  • Grzesiak, Wilhelm;Zaborski, Daniel;Szatkowska, Iwona;Krolaczyk, Katarzyna
    • Animal Bioscience
    • /
    • 제34권4호
    • /
    • pp.770-782
    • /
    • 2021
  • Objective: The aim of the present study was to compare the effectiveness of three approaches (the seasonal auto-regressive integrated moving average [SARIMA] model, the nonlinear autoregressive exogenous [NARX] artificial neural networks and Wood's model) to the prediction of milk yield during lactation. Methods: The dataset comprised monthly test-day records from 965 Polish Holstein-Friesian Black-and-White primiparous cows. The milk yields from cows in their first lactation (from 5 to 305 days in milk) were used. Each lactation was divided into ten lactation stages of approximately 30 days. Two age groups and four calving seasons were distinguished. The records collected between 2009 and 2015 were used for model fitting and those from 2016 for the verification of predictive performance. Results: No significant differences between the predicted and the real values were found. The predictions generated by SARIMA were slightly more accurate, although they did not differ significantly from those produced by the NARX and Wood's models. SARIMA had a slightly better performance, especially in the initial periods, whereas the NARX and Wood's models in the later ones. Conclusion: The use of SARIMA was more time-consuming than that of NARX and Wood's model. The application of the SARIMA, NARX and Wood's models (after their implementation in a user-friendly software) may allow farmers to estimate milk yield of cows that begin production for the first time.

SARIMA와 ARDL모형을 활용한 COVID-19 구간별 원/달러 환율 예측 (Prediction of KRW/USD exchange rate during the Covid-19 pandemic using SARIMA and ARDL models)

  • 오인정;김우주
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.191-209
    • /
    • 2022
  • 2020년 코로나19 발발 이후 한국 경제를 포함한 국제 시장 환경은 급속하게 변하고 있고 한국 금융시장의 중요 경제 지표인 원/달러 환율도 요동치고 있다. 대외 의존도가 높은 한국 경제에서 환율에 대한 이해는 항상 중요한 연구 과제였고, 특히 코로나 확산이 환율에 미치는 연구는 시기적으로 많은 경제 학자들의 관심사이기도 하다. 따라서 본 연구는 코로나19 발발 이후 환율과 경제 지표의 관계를 분석하고 환율 예측을 위한 단변량 다변량 예측 모형을 구축하여 모형의 예측 성능을 비교 검증을 하였다. 코로나 전후 기간을 세 기간으로 나눠서 기간 1은 코로나 발발전과 초기, 기간 2는 코로나 대확산, 기간 3을 코로나 안정기로 나누고 기간 1의 환율 데이터를 학습한 SARIMA 모형과 같은 기간의 경제 변수와 환율 데이터를 학습한 ARDL 모형의 예측 성능을 비교하였다. 기간별 RMSE기준으로 SARIMA 모형은 기간 2에서 예측 성능이 뛰어나고 ARDL 모형은 기간 3에서 예측 성능이 가장 우수한 것으로 나타났다. 연구 결론은 환율과 경제 변수의 통상적인 관계가 나타나는 기간 3에서는 변수 관계를 반영하는 ARDL 모형이 좀 더 예측 성능이 좋은 모델이고 기존의 전형적인 환율과 경제 변수의 패턴에서 벗어난 과도기 시기인 기간 2에는 과거 환율 추이만 반영하는 SARIMA 모형이 좀 더 우수한 예측 성능을 보여주는 모델로 검증되었다.

항공화물수요예측에서 계절 ARIMA모형 적용에 관한 연구: 인천국제공항발 미주항공노선을 중심으로 (Application of SARIMA Model in Air Cargo Demand Forecasting: Focussing on Incheon-North America Routes)

  • 서보현;양태웅;하헌구
    • 대한교통학회지
    • /
    • 제35권2호
    • /
    • pp.143-159
    • /
    • 2017
  • 본 연구는 2003년 1사분기부터 2016년 2사분기 까지 인천국제공항에서 미주노선을 통하여 미주 내 공항에 도착하는 항공화물의 시계열 자료를 통하여 SARIMA 모형을 활용하여 항공화물 수요예측을 시행하였다. 또한 SARIMA 모형을 활용하여 만들어진 수요예측 모형과 기존 연구에 주로 활용되어졌던 ARIMA 모형을 활용하여 만들어진 수요예측 모형과 비교분석함으로써, 주기적인 특성 및 계절성을 가진 시계열 자료에 대한 SARIMA 모형의 상대적으로 우수한 예측 정확성을 입증하였다. 기존의 항공 관련 연구는 주로 여객에 관한 연구가 상대적으로 많았다. 또한 화물과 관련된 연구에서도 특정노선이 아닌 공항이나 전체에 대한 연구가 대부분이었다. 이러한 상황에서, SARIMA 모형을 활용하여 미주지역이라는 특정 노선에 대한 항공화물의 수요를 예측한 본 연구는 큰 의의가 있다고 생각된다.

시계열모형을 이용한 굴 생산량 예측 가능성에 관한 연구 (A Study on Forecast of Oyster Production using Time Series Models)

  • 남종오;노승국
    • Ocean and Polar Research
    • /
    • 제34권2호
    • /
    • pp.185-195
    • /
    • 2012
  • This paper focused on forecasting a short-term production of oysters, which have been farmed in Korea, with distinct periodicity of production by year, and different production level by month. To forecast a short-term oyster production, this paper uses monthly data (260 observations) from January 1990 to August 2011, and also adopts several econometrics methods, such as Multiple Regression Analysis Model (MRAM), Seasonal Autoregressive Integrated Moving Average (SARIMA) Model, and Vector Error Correction Model (VECM). As a result, first, the amount of short-term oyster production forecasted by the multiple regression analysis model was 1,337 ton with prediction error of 246 ton. Secondly, the amount of oyster production of the SARIMA I and II models was forecasted as 12,423 ton and 12,442 ton with prediction error of 11,404 ton and 11,423 ton, respectively. Thirdly, the amount of oyster production based on the VECM was estimated as 10,425 ton with prediction errors of 9,406 ton. In conclusion, based on Theil inequality coefficient criterion, short-term prediction of oyster by the VECM exhibited a better fit than ones by the SARIMA I and II models and Multiple Regression Analysis Model.