• 제목/요약/키워드: SAR Simulation

Search Result 166, Processing Time 0.37 seconds

Performance Analysis of SAR System Using Radar Target Simulation Equipment (표적모의장치를 이용한 SAR 장비의 성능 분석)

  • Kweon, Soon-Koo;Yeo, Hwan-Yong;Park, Sung-Min;Han, Ji-Hoon;Jung, Chang-Sik;Kim, Ki-Wan;Shin, Hyun-Ik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.118-127
    • /
    • 2018
  • In this work, we have designed and manufactured radar target simulation equipment for the performance analysis of synthetic aperture radar(SAR) systems. First, we have explained the function and performance specification of the target simulation equipment and point target scenario generation for validation of the SAR system. In addition, we have developed a simple and accurate calibration method for the time delay of the SAR system using the manufactured target simulation equipment. We have analyzed the point target impulse response function of the SAR image acquired using the SAR system and the target simulation equipment. It was observed that the measured peak to side lobe ratio(=-13.25 dB) and resolution(=0.49 m) are in good agreement with the corresponding theoretical values.

Development of A Simulation Technique for Arc-Rail Based GB-SAR System (원형레일 기반의 지상 SAR 시스템 시뮬레이션 기법 개발)

  • Kim, Kwang-Eun;Cho, Seong-Jun;Lee, Hoon-Yol
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.107-112
    • /
    • 2009
  • A technique for the simulation of various kinds of ground based SAR system was developed. This is an ancillary research for the development of an ArcSAR system which uses an arc-rail as a platform for the antenna movement instead of linear rail. The results of applying conventional Deramp FFT based SAR focusing algorithm to the simulated raw signal of linear rail type ground based SAR for the point targets showed that the developed simulation technique generated accurate GB-SAR raw signal. The developed technique is now being used for the development and verification of SAR focusing algorithm for the arc-rail type ground based SAR. The simulation technique is also expected to be very useful for the purpose oriented system design and operation planning of ground based SAR technique.

A Study on SAR Variation by Folding Angle and EMI Paint Distribution of Case for Mobile Handsets (휴대폰의 폴딩 각도와 휴대폰 케이스의 EMI 방지 도료 분포패턴에 따른 SAR 변화에 관한 연구)

  • 이규호;김창일;양운근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.421-430
    • /
    • 2003
  • In this paper, we propose a method to consider SAR(Specific Absorption Rate) at beginning stage of handsets development. First, simulation was carried out with changing folding angle from 150$^{\circ}$to 142$^{\circ}$. Simulation results show that SAR value is decreased with decreasing the folding angle. When folding angle is 142$^{\circ}$, error between simulation and measurement results is about 3.95 %. Second, we made some experiments with EMI (Electromagnetic Interference) paint, and its results show that different pattern of EMI paint have different SAR values. After removing EMI paint at the lower part of antenna feeding point, we got the decrease efficiency of 15.46 % for SAR value. When we applied zigzag painting pattern, we got the highest SAR decrease efficiency.

High Resolution InSAR Phase Simulation using DSM in Urban Areas (도심지역 DSM을 이용한 고해상도 InSAR 위상 시뮬레이션)

  • Yoon, Geun-Won;Kim, Sang-Wan;Lee, Yong-Woong;Lee, Dong-Cheon;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.181-190
    • /
    • 2011
  • Since the radar satellite missions such as TerraSAR-X and COSMO-SkyMed were launched in 2007, the spatial resolution of spaceborne SAR(Synthetic Aperture Radar) images reaches about 1 meter at spotlight mode. In 2011, the first Korean SAR satellite, KOMPSAT-5, will be launched, operating at X-band with the highest spatial resolution of 1 m as well. The improved spatial resolution of state-of-the-art SAR sensor suggests expanding InSAR(Interferometric SAR) analysis in urban monitoring. By the way, the shadow and layover phenomena are more prominent in urban areas due to building structure because of inherent side-looking geometry of SAR system. Up to date the most conventional algorithms do not consider the return signals at the frontage of building during InSAR phase and SAR intensity simulation. In this study the new algorithm introducing multi-scattering in layover region is proposed for phase and intensity simulation, which is utilized a precise LIDAR DSM(Digital Surface Model) in urban areas. The InSAR phases simulated by the proposed method are compared with TerraSAR-X spotlight data. As a result, both InSAR phases are well matched, even in layover areas. This study will be applied to urban monitoring using high resolution SAR data, in terms of change detection and displacement monitoring at the scale of building unit.

A FREQUENCY DOMAIN RAW SIGNAL SIMULATOR FOR SAR

  • Kwak Sunghee;Kim Moon-Gyu;Shin Dongseok;Shin Jae-Min
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.530-533
    • /
    • 2005
  • A raw signal simulator for synthetic aperture radar (SAR) is a useful tool for the design and implementation of SAR system. Also, in order to analyze and verify the developed SAR processor, the raw signal simulator is required. Moreover, there is the need for a test system to help designing new SAR sensors and mission of SAR system. The derived parameters of the SAR simulator also help to generate accurate SAR processing algorithms. Although the ultimate purpose of this research is to presents a general purpose SAR simulator, this paper presents a SAR simulator in frequency domain at the first step. The proposed simulator generates the raw signal by changing various simulation parameters such as antenna parameters, modulation parameters, and sampling parameters. It also uses the statistics from an actual SAR image to imitate actual physical scattering. This paper introduces the procedures and parameters of the simulator, and presents the simulation results. Experiments have been conducted by comparing the simulated raw data with original raw SAR image. In addition, the simulated raw data have been verified through commercial SAR processing software.

  • PDF

A Study on SAR Variation by EMI Paint Distribution and Folding Angle for Mobile Handsets (EMI 도료 패턴과 폴딩 각도에 따른 휴대폰의 SAR 변화에 관한 연구)

  • Yang, Woon-Geun;Lee, Won-Kew;Son, Ji-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.903-908
    • /
    • 2005
  • In this paper, in order to consider SAR(Specific Absorption Rate) problem at the beginning stage of a handset development, we investigated the Shh value change by using simulation method according to various EMI(Electromagnetic Interference) paint patterns on front case of a handset and folding angles. First, we made some experiments with EMI paint pattern on front case of a handset, and obtained results showed that different patterns of EMI paint had different SAR values. Among the simulation results on SAR value according to EMI paint patterns, the hairpin pattern showed the best performance, i.e. the decrease efficiency of $8.04\%$ and completely removed pattern showed the decrease efficiency of $5.94\%$. Orignal pattern was set as the reference and the folding angle was $150^{\circ}$. Second, simulation was carried out with changing folding angle from $150^{\circ}$ to $140^{\circ}$ and $160^{\circ}$. Simulation results for the modeled handset showed that SAR value was decreased with increasing the folding angle. When the folding angle was $160^{\circ}$ and with original pattern, we got the SAR value of about 1,61 W/kg. When we applied hairpin pattern with the folding angle of $160^{\circ}$, we got the lowest SAR value of about 1.45 W/kg.

Correction of Radiometric Distortion Caused by Geometric Property in SAR image using SAR Simulation (SAR영상의 모의제작에 의한 기하학적 복사왜곡의 보정)

  • Jeong, Soo;Yeu, Bock-Mo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 1998
  • SAR data can be achieved independently of weather conditions or sun illumination which is main limitation of electro-optical sensor to get image. The information from imagery can be more enlarged using Shh data be-cause SAR data offers different information from electro-optical sensor. SAR data contains various distortions caused by the radar specification and geometric properties of data acquisition. These distortions should be removed to get the information with acceptable accuracy. In this study, we aimed to correct the radiometric distortion in Shh image caused by the geometric property of the object. For this purpose, we simulated the SAR image by modelling of the power of return beam which is variable according to the geometric configuration between SAR antenna and ground object. Dividing the SAR image by the simulation image, then, we can get the radiometrically corrected image. As a result of this study, we could minimize the effect of radiometric distortion in achieving some qualitative information from SAR image for the related field, such as Geospatial Information System.

  • PDF

SAR RETURN SIGNAL SYNTHESIS IN TIME-SPATIAL DOMAIN

  • Shin Dongseok;Kim Moon-Gyu;Kwak Sunghee
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.729-732
    • /
    • 2005
  • This paper describes a time-spatial domain model for simulating raw data acquisition of space-borne SAR system. The position, velocity and attitude information of the platform at a certain time instance is used for deriving sensor-target model. Ground target is modelled by a set of point scatters with reflectivity and two-dimensional ground coordinates. The signal received by SAR is calculated for each slow and fast time instance by integrating the reflectivity and phase values from all target point scatters. Different from frequency domain simulation algorithms, the proposed time domain algorithm can provide fully physical modelling of SAR raw data simulation without any assumptions or approximations.

  • PDF

SAR Variation by EMI Paint Distribution on Front Case of Mobile Handsets

  • Lee Won Kew;Son Ji Myoung;Yang Woon Geun
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.339-342
    • /
    • 2004
  • In this paper, we investigated methods to reduce SAR(Specific Absorption Rate) value with EMI(Electromagnetic Interference) paint distribution on front case of mobile handset. Simulations for several different EMI patterns were carried out. For the purpose of modeling, we used 3 dimensional CAD(Computer Aided Design) program, `Pro-engineering'. SAR simulation was done with SEMCAD, simulation platform for electromagnetic compatibility antenna design and dosimetry. In order to distinguish the individual pieces and to enable an assignment of the different material properties, each subfile was imported separately. In simulation, folding angle was set to $142^{\circ}.$ If we vary folding angle, different SAR value will be obtained. Among the tested EMI paint patterns, the hairpin pattern showed the best performance, i.e. the decrease efficiency of $16.5\%$ and horizontal-direction zigzag pattern showed the decrease efficiency of $12.2\%$ when we set the completely removed pattern as reference.

  • PDF

Analysis of SAR Reduction Methods for Mobile Communication Handsets (이동통신단말기 SAR 저감 방안 분석)

  • 정민석;이범선
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.2
    • /
    • pp.155-163
    • /
    • 2002
  • In this paper, we propose SAR reduction methods based on power conservation relation, After defining SRF(SAR Reduction Factor) for a more quantitative discussion of effective SAR reduction methods, many kinds of simulation have been performed. We compare the SAR by a flip type handset with that of folder type one. It is found that in a typical position of handsets over a human head, the SAR when using the folder type is about 30 % smaller than that when using the flip type. The effects of ferrite material when using flip type handset are shown to be not considerable when using a folder type.