• Title/Summary/Keyword: SAR 모형

Search Result 52, Processing Time 0.028 seconds

Topographic Mapping using SAR Interferometry Method (레이다 간섭기법(SAR Interferometry)을 이용한 지형도 제작)

  • Jeong, Do-Chan;Kim, Byung-Guk
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2000.06a
    • /
    • pp.67-76
    • /
    • 2000
  • Recently, SAR Interferometry method is actively being studied as a new technic in topographic mapping using satellite imageries. it extract height values using two SAR imageries covering same areas. Unlike when using SPOT imageries, it isn't affected by atmospheric conditions and time. But it is difficult to process radar imageries and the height accuracy is very low where relief displacements are high. In this study, we produced DEM(Digital Elevation Model) using ERS-1, ERS-2 tandem data and analysed the height accuracy over 14 ground control points. The mean error in height was 14.06m. But when using airborne SAR data, it Is expected that we can produce more accurate DEM which will be able to ue used in updating 1/10,000 or 1/25,000 map.

  • PDF

Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Deep Learning Regression Model (딥러닝 모형을 이용한 Sentinel SAR 기반 고해상도 토양수분 산정)

  • Lee, Taehwa;Kim, Sangwoo;Chun, Beomseok;Jung, Younghun;Shin, Yongchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.114-114
    • /
    • 2021
  • 본 연구에서는 Sentinel-1 SAR 센서 기반 이미지자료와 딥러닝기법을 이용하여 고해상도 토양수분을 산정하였다. 입력자료는 지표특성(모래함량, 점토함량, 경사도), 인공위성 기반의 강우와 LANDSAT 기반의 이미지자료(NDVI, LST, 공간분포 토양수분)를 사용하였다. 강우자료의 경우 GPM(Global Precipitation Measurement) 일강우 자료를 사용하였으며, 관측일 기준으로 5일전까지의 강우자료와 5일평균강우를 구분하여 사용하였다. LANDSAT 기반의 토양수분 이미지자료와 지점관측 토양수분을 이용하여 검·보정 이후 딥러닝 모형의 입력자료로 사용하였다. 입력자료는 30m × 30m 해상도로 Resample 하여 딥러닝 모형의 학습을 진행하였으며, 학습에 사용된 모형을 이용하여 Sentinel-1 기반의 고해상도(10m × 10m) 토양수분이미지를 산정하였다. 검증지점은 거창군 거창읍, 계룡시 두마면, 장수군 장수읍 및 무주군 무주읍 토양수분 관측지점을 선정하였다. 거창군 거창읍의 산정결과, LANDSAT 기반의 토양수분 이미지와 DNN 기반의 토양수분 이미지가 매우 유사하게 나타났으며, 모의값(DNN 기반 토양수분)이 실측값(LANDSAT 기반의 토양수분)을 잘 반영한 것(R: 0.875 ; RMSE: 0.013)으로 나타났다. 또한 학습모형을 토지피복이 유사한 지역에 적용하여 토양수분을 산정한 결과 검증지점 계룡시(R: 0.897 ; RMSE: 0.014), 장수군(R: 0.770 ; RMSE: 0.024) 및 무주군(R: 0.909 ; RMSE: 0.012)의 모의값이 실측값과 매우 유사한 것으로 나타났다. 이를 바탕으로 Seninel-1 SAR센서 이미지자료와 딥러닝기법을 연계한 고해상도 토양수분자료가 농업, 수문, 환경 등 다양한 분야에서 활용될 수 있을 것으로 판단된다.

  • PDF

SAR 영상을 이용한 수치표고모형 제작방법에 관한 연구

  • 이창원;문우일
    • Proceedings of the KSRS Conference
    • /
    • 2000.04a
    • /
    • pp.85-90
    • /
    • 2000
  • 백두산 지역의 JERS-1 SLC 영상과 볼리비아 지역의 RADARSAT 영상에 대해 각각 interferometry와 radargrammetry를 이용하여 수치표고모형을 제작하였다. Interferometry 는 coregistration, interferogram 작성, phase unwrapping 과정으로 나눠지는데 temporal decorrelation으로 낮은 coherence, 부정확한 궤도정보가 DEM의 정확도를 저하시키는 주요 원인으로 작용하였다. Radargrammetry는 photogrammetry와 동일한 처리과정, 즉 GCP를 이용한 stereo model 설정, 영상 matching, 고도추출단계로 이루어지지만 광학영상 과는 다른 SAR 영상의 기하학적, 방사적 특성이 고려되어야 한다.

  • PDF

A Comparative Study of Geocoding Methods for Radarsat Image - According to the DEM Resolutions - (Radarsat 영상의 기하보정 방법에 대한 비교 연구 - DEM 해상도에 따라 -)

  • 한동엽;박민호;김용일
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.69-82
    • /
    • 1998
  • SAR imagery can overcome the limitations of electro-optical sensor imagery and provide us Information which plays a supplementary role. But it is necessary to remove a variety of geometric errors in SAR imagery. An accurate geometric correction of SAR imagery is not easy task to achieve, though some techniques and theories are introduced. We also have difficulties such as transformation problem between 'International' ellipsoid in Radarsat system and 'Bessel' ellipsoid. Two widely used correction method, one is made by simulated image, and the other by collinearity equation, usually use DEM. In this study, the merits and demerits of geocoding methods respectively and the effective method for Korean terrain were found.

Small Area Estimation Using Bayesian Auto Poisson Model with Spatial Statistics (공간통계량을 활용한 베이지안 자기 포아송 모형을 이용한 소지역 통계)

  • Lee, Sang-Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.19 no.3
    • /
    • pp.421-430
    • /
    • 2006
  • In sample survey sample designs are performed by geographically-based domain such as countries, states and metropolitan areas. However mostly statistics of interests are smaller domain than sample designed domain. Then sample sizes are typically small or even zero within the domain of interest. Shin and Lee(2003) mentioned Spatial Autoregressive(SAR) model in small area estimation model-based method and show the effectiveness by MSE. In this study, Bayesian Auto-Poisson Model is applied in model-based small area estimation method and compare the results with SAR model using MSE ME and bias check diagnosis using regression line. In this paper Survey of Disability, Aging and Cares(SDAC) data are used for simulation studies.

Estimation of spatial soil moisture using Sentinel-1 SAR images and ANN considering antecedent precipitation (선행강우를 고려한 Sentinel-1 SAR 위성영상과 ANN을 활용한 공간 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Son, Moobeen;Han, Daeyoung;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.117-117
    • /
    • 2021
  • 본 연구에서는 Sentinel-1A/B C-band SAR(Synthetic Aperture Radar) 위성영상을 기반으로 인공신경망(Artificial Neural Network, ANN) 모형을 활용해 금강 유역 상류 40×50 km2 면적에 대한 토양수분을 산정하였다. 10 m 공간 해상도의 Sentinel-1A/B SAR 영상은 8일 간격으로 2015년부터 2019년까지 5년 동안 구축하였고, SNAP(SentiNel Application Platform)을 통해 기하 보정, 방사 보정 및 잡음(Noise) 보정을 수행하고 VV 및 VH 편파 후방산란계수로 변환하였다. ANN 모형 검증자료로 TDR(Time Domain Reflectometry)로 측정된 9개 지점의 실측 토양수분 자료를 구축하였으며, 수문학적 개념인 선행강우를 고려하기 위해 동지점에 대한 강수량 자료를 구축하였다. ANN은 각 지점에 해당하는 토양 속성별로 모델링하고, 전체 기간 및 계절별로 나누어 모의하였으며, 전체 자료의 60%와 40%를 각각 훈련 및 테스트 데이터로 사용하였다. 산정된 토양수분은 상관계수(Correlation Coefficient, R)와 평균제곱근오차(Root Mean Square Error, RMSE)를 활용하여 검증을 수행할 예정이다.

  • PDF

Estimation of soil moisture based on Sentinel-1 SAR data: Assessment of soil moisture estimation in different vegetation condition (Sentinel-1 SAR 토양수분 산정 연구: 식생에 따른 토양수분 모의평가)

  • Cho, Seongkeun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.2
    • /
    • pp.81-91
    • /
    • 2021
  • Synthetic Apreture Radar (SAR) is attracting attentions with its possibility of producing high resolution data that can be used for soil moisture estimation. High resolution soil moisture data enables more specific observation of soil moisture than existing soil moisture products from other satellites. It can also be used for studies of wildfire, landslide, and flood. The SAR based soil moisture estimation should be conducted considering vegetation, which affects backscattering signals from the SAR sensor. In this study, a SAR based soil moisture estimation at regions covered with various vegetation types on the middle area of Korea (Cropland, Grassland, Forest) is conducted. The representative backscattering model, Water Cloud Model (WCM) is used for soil moisture estimation over vegetated areas. Radar Vegetation Index (RVI) and in-situ soil moisture data are used as input factors for the model. Total 6 study areas are selected for 3 vegetation types according to land cover classification with 2 sites per each vegetation type. Soil moisture evaluation result shows that the accuracy of each site stands out in the order of grassland, forest, and cropland. Forested area shows correlation coefficient value higher than 0.5 even with the most dense vegetation, while cropland shows correlation coefficient value lower than 0.3. The proper vegetation and soil moisture conditions for SAR based soil moisture estimation are suggested through the results of the study. Future study, which utilizes additional ancillary vegetation data (vegetation height, vegetation type) is thought to be necessary.

Despeckling and Classification of High Resolution SAR Imagery (고해상도 SAR 영상 Speckle 제거 및 분류)

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.5
    • /
    • pp.455-464
    • /
    • 2009
  • Lee(2009) proposed the boundary-adaptive despeckling method using a Bayesian model which is based on the lognormal distribution for image intensity and a Markov random field(MRF) for image texture. This method employs the Point-Jacobian iteration to obtain a maximum a posteriori(MAP) estimate of despeckled imagery. The boundary-adaptive algorithm is designed to use less information from more distant neighbors as the pixel is closer to boundary. It can reduce the possibility to involve the pixel values of adjacent region with different characteristics. The boundary-adaptive scheme was comprehensively evaluated using simulation data and the effectiveness of boundary adaption was proved in Lee(2009). This study, as an extension of Lee(2009), has suggested a modified iteration algorithm of MAP estimation to enhance computational efficiency and to combine classification. The experiment of simulation data shows that the boundary-adaption results in yielding clear boundary as well as reducing error in classification. The boundary-adaptive scheme has also been applied to high resolution Terra-SAR data acquired from the west coast of Youngjong-do, and the results imply that it can improve analytical accuracy in SAR application.

Assessment of Stand-alone Utilization of Sentinel-1 SAR for High Resolution Soil Moisture Retrieval Using Machine Learning (기계학습 기반 고해상도 토양수분 복원을 위한 Sentinel-1 SAR의 자립형 활용성 평가)

  • Jeong, Jaehwan;Cho, Seongkeun;Jeon, Hyunho;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.571-585
    • /
    • 2022
  • As the threat of natural disasters such as droughts, floods, forest fires, and landslides increases due to climate change, social demand for high-resolution soil moisture retrieval, such as Synthetic Aperture Radar (SAR), is also increasing. However, the domestic environment has a high proportion of mountainous topography, making it challenging to retrieve soil moisture from SAR data. This study evaluated the usability of Sentinel-1 SAR, which is applied with the Artificial Neural Network (ANN) technique, to retrieve soil moisture. It was confirmed that the backscattering coefficient obtained from Sentinel-1 significantly correlated with soil moisture behavior, and the possibility of stand-alone use to correct vegetation effects without using auxiliary data observed from other satellites or observatories. However, there was a large difference in the characteristics of each site and topographic group. In particular, when the model learned on the mountain and at flat land cross-applied, the soil moisture could not be properly simulated. In addition, when the number of learning points was increased to solve this problem, the soil moisture retrieval model was smoothed. As a result, the overall correlation coefficient of all sites improved, but errors at individual sites gradually increased. Therefore, systematic research must be conducted in order to widely apply high-resolution SAR soil moisture data. It is expected that it can be effectively used in various fields if the scope of learning sites and application targets are specifically limited.

Space Time Autoregressive Model for Small Area Estimation (공간 시계열 모형을 이용한 소지역 추정)

  • Kim Jae Doo;Shin Key-Il;Lee Sang Eun
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.627-637
    • /
    • 2005
  • Small area estimation has been studied using various methods such as direct, indirect, synthetic and based on regression or time series model . In this paper we investigate a motel-based small area estimation which takes into account the spare time autoregressive model. The Economic Active Population Surveys in 2001 are used for analysis and the results from space-time autoregressive(STAR) and simultaneous autoregressive(SAR) model are compared with using MSE, MAE and MB.