• Title/Summary/Keyword: SAR (synthetic aperture radar) imagery analysis

Search Result 20, Processing Time 0.027 seconds

Technology Trend in Synthetic Aperture Radar (SAR) Imagery Analysis Tools (SAR(Synthetic Aperture Radar) 영상 분석도구 개발기술 동향)

  • Lee, Kangjin;Jeon, Seong-Gyeong;Seong, Seok-Yong;Kang, Ki-mook
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.268-281
    • /
    • 2021
  • Recently, the synthetic aperture radar (SAR) has been increasingly in demand due to its advantage of being able to observe desired points regardless of time and weather. To utilize SAR data, first of all, many pre-processing such as satellite orbit correction, radiometric calibration, multi-looking, and geocoding are required. For analysis of SAR imagery such as object detection, change detection, and DEM(Digital Elevation Model), additional processings are needed. These pre-processing and additional processes are very complex and require a lot of time and computational resources. In order to handle the SAR images easily, the institutions that use SAR images develop analysis tools and provide users. This paper introduces the function and characteristics of representative SAR imagery analysis tools.

Analysis of Offshore Aquaculture Detection Techniques Using Synthetic Aperture Radar Images (레이더 영상을 이용한 연안 양식장 탐지 기법 분석)

  • Do-Hyun Hwang;Hahn Chul Jung
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1401-1411
    • /
    • 2023
  • In the face of escalating utilization of the marine spatial domain, conflicts have emerged among stakeholders, necessitating effective management strategies beyond conventional government permits and regulations. Particularly within the domain of aquaculture, operational oversight relies on a localized licensing system, posing challenges in accurately assessing the prevailing circumstances. This research employs synthetic aperture radar (SAR) imagery as a tool to monitor coastal aquaculture fish farms, aimed at enhancing insights into management protocols. Leveraging Sentinel-1A imagery and time series SAR data integration, a superimposition technique is utilized, facilitating noise reduction while retaining crucial information regarding smaller-scale facilities, such as fish farms. Through analysis of VH polarization data, a detection overall accuracy of approximately 88% for coastal fish farms was achieved. The findings of this study offer potential applications in the continuous monitoring of aquaculture farms in correspondence with seasonal variations in aquaculture yields, thereby proposing frameworks for the establishment of effective management cycles for marine space utilization.

Analysis of Flood Inundated Area Using Multitemporal Satellite Synthetic Aperture Radar (SAR) Imagery (시계열 위성레이더 영상을 이용한 침수지 조사)

  • Lee, Gyu-Seong;Kim, Yang-Su;Lee, Seon-Il
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.4
    • /
    • pp.427-435
    • /
    • 2000
  • It is often crucial to obtain a map of flood inundated area with more accurate and rapid manner. This study attempts to evaluate the potential of satellite synthetic aperture radar (SAR) data for mapping of flood inundated area in Imjin river basin. Multitemporal RADARSAT SAR data of three different dates were obtained at the time of flooding on August 4 and before and after the flooding. Once the data sets were geometrically corrected and preprocessed, the temporal characteristics of relative radar backscattering were analyzed. By comparing the radar backscattering of several surface features, it was clear that the flooded rice paddy showed the distinctive temporal pattern of radar response. Flooded rice paddy showed significantly lower radar signal while the normally growing rice paddy show high radar returns, which also could be easily interpreted from the color composite imagery. In addition to delineating the flooded rice fields, the multitemporal radar imagery also allow us to distinguish the afterward condition of once-flooded rice field.

  • PDF

Resolution Conversion of SAR Target Images Using Conditional GAN (Conditional GAN을 이용한 SAR 표적영상의 해상도 변환)

  • Park, Ji-Hoon;Seo, Seung-Mo;Choi, Yeo-Reum;Yoo, Ji Hee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.12-21
    • /
    • 2021
  • For successful automatic target recognition(ATR) with synthetic aperture radar(SAR) imagery, SAR target images of the database should have the identical or highly similar resolution with those collected from SAR sensors. However, it is time-consuming or infeasible to construct the multiple databases with different resolutions depending on the operating SAR system. In this paper, an approach for resolution conversion of SAR target images is proposed based on conditional generative adversarial network(cGAN). First, a number of pairs consisting of SAR target images with two different resolutions are obtained via SAR simulation and then used to train the cGAN model. Finally, the model generates the SAR target image whose resolution is converted from the original one. The similarity analysis is performed to validate reliability of the generated images. The cGAN model is further applied to measured MSTAR SAR target images in order to estimate its potential for real application.

Performance Analysis in Wide Swath Mode on a Spaceborne SAR System (위성탑재 영상레이다(SAR)의 광역감시 모드에 대한 체계 성능 분석)

  • 이범석
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.104-123
    • /
    • 2001
  • Synthetic Aperture Radar(SAR) can provide radar imagery in all weather, day and night situations. Recently SAR system consisted of several imaging modes, has been used for not only military purpose, but also commercial and scientific applications. This paper firstly reviews spaceborne SAR theory, specially scansar principle, and secondly the theories and the design procedures of system performance analysis in the scansar mode, which are different from the ones in the conventional stripmap mode. Based on the SAR-related knowledge, it lastly derives the results of performance analysis in wide swath mode using the scansar technique at the design phase. It shows that these results can meet the system requirements as given the customer. In future, they will continuously be updated using the real measurement data, in connection with the development of a spaceborne SAR system.

  • PDF

Spatial Analysis on Marine Atmosphere Boundary Layer Features of SAR Imagery Using Empirical Mode Decomposition

  • Jo, Young-Heon;Oliveira, Gustavo Henrique;Yan, Xiao-Hai
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.351-358
    • /
    • 2017
  • A new method to decompose the footprints of marine atmosphere boundary layer (MABL) on Synthetic Aperture Radar (SAR) imagery into characteristic spatial scales is proposed. Using two-dimensional Empirical Mode Decomposition (EMD) we obtain three Intrinsic Mode Functions (IMFs), which mainly present longitudinal rolls, three-dimensional cells and atmospheric gravity waves (AGW). The rolls and cells have spatial scales between 3.0 km and 3.8 km and between 5.3 km and 7.1 km, respectively. Based on previous observations and mixed-layer similarity theory, we estimated MABL's depths that vary from 0.95 km to 1.2 km over the rolls and from 3.0 km to 3.8 km over the cells. The AGW has maximum spectrum at 14.3 km wavelength. The method developed in this work can be used to decompose other satellite imageries into individual features through characteristic spatial scales.

A Statistical Analysis of JERS L-band SAR Backscatter and Coherence Data for Forest Type Discrimination

  • Zhu Cheng;Myeong Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.25-40
    • /
    • 2006
  • Synthetic aperture radar (SAR) from satellites provides the opportunity to regularly incorporate microwave information into forest classification. Radar backscatter can improve classification accuracy, and SAR interferometry could provide improved thematic information through the use of coherence. This research examined the potential of using multi-temporal JERS-l SAR (L band) backscatter information and interferometry in distinguishing forest classes of mountainous areas in the Northeastern U.S. for future forest mapping and monitoring. Raw image data from a pair of images were processed to produce coherence and backscatter data. To improve the geometric characteristics of both the coherence and the backscatter images, this study used the interferometric techniques. It was necessary to radiometrically correct radar backscatter to account for the effect of topography. This study developed a simplified method of radiometric correction for SAR imagery over the hilly terrain, and compared the forest-type discriminatory powers of the radar backscatter, the multi-temporal backscatter, the coherence, and the backscatter combined with the coherence. Statistical analysis showed that the method of radiometric correction has a substantial potential in separating forest types, and the coherence produced from an interferometric pair of images also showed a potential for distinguishing forest classes even though heavily forested conditions and long time separation of the images had limitations in the ability to get a high quality coherence. The method of combining the backscatter images from two different dates and the coherence in a multivariate approach in identifying forest types showed some potential. However, multi-temporal analysis of the backscatter was inconclusive because leaves were not the primary scatterers of a forest canopy at the L-band wavelengths. Further research in forest classification is suggested using diverse band width SAR imagery and fusing with other imagery source.

ERS SAR observations of the Korean coastal waters

  • Mitnik, Leonid M.;Yoon, Hong-Joo;Dubina, Vyacheslav A.;Kim, Sang-Woo;Kim, Young-Seup
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1124-1126
    • /
    • 2003
  • The processes of regional scales in the East Korean coastal waters were investigated by analysis of the Synthetic Aperture Radar (SAR) images taken by the European Research Satellites ERS-1, ERS-2 and Envisat. More than 500 quick look frames taken in 1991-2003 were examined to detect the frames with clearly surface expressions of oceanic phenomena. 26 ERS-1/2 SAR and 11 Envisat wide swath Advanced SAR (ASAR) frames were selected and obtained from the European Space Agency in a form of the precision high-resolution images. The following oceanic phenomena and processes were evident in the radar imagery through the Korean costal waters: fronts, currents, eddies, internal waves, island and ship wakes, oil pollution, etc. They manifested themselves in the field of sea surface roughness, their scale ranged from several tens meters to about 100 km. The most common morphology of these phenomena was a series of contrast dark or light curvilinear lines and bands. The joint analysis of the discussed SAR images with other satellite and in situ data supported and enhanced our interpretation of SAR signatures.

  • PDF

ERS SAR Observations of the Korean Coastal Waters

  • Yoon, Hong-Joo;Mitnik Leonid M.;Kang, Heung-Soon;Cho, Han-Keun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.65-69
    • /
    • 2007
  • The processes of regional scales in the East Korean coastal waters were investigated by analysis of the Synthetic Aperture Radar (SAR) images taken by the European Research Satellites ERS-1, ERS-2 and Envisat. More than 500 quick look frames taken in 1991-2003 were examined to detect the frames with clearly surface expressions of oceanic phenomena. 26 ERS-1/2 SAR and 11 Envisat wide swath Advanced SAR (ASAR) frames were selected and obtained from the European Space Agency in a form of the precision high-resolution images. The following oceanic phenomena and processes were evident in the radar imagery through the Korean costal waters: fronts, currents, eddies, internal waves, island and ship wakes, oil pollution, etc. They manifested themselves in the field of sea surface roughness, their scale ranged from several tens meters to about 100 km. The most common morphology of these phenomena was a series of contrast dark or light curvilinear lines and bands. The joint analysis of the discussed SAR images with other satellite and in situ data supported and enhanced our interpretation of SAR signatures.

Study on the Possibility of Estimating Surface Soil Moisture Using Sentinel-1 SAR Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 Sentinel-1 SAR 위성영상을 이용한 지표 토양수분량 산정 가능성에 관한 연구)

  • Younghyun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.229-241
    • /
    • 2024
  • With the advancement of big data processing technology using cloud platforms, access, processing, and analysis of large-volume data such as satellite imagery have recently been significantly improved. In this study, the Change Detection Method, a relatively simple technique for retrieving soil moisture, was applied to the backscattering coefficient values of pre-processed Sentinel-1 synthetic aperture radar (SAR) satellite imagery product based on Google Earth Engine (GEE), one of those platforms, to estimate the surface soil moisture for six observatories within the Yongdam Dam watershed in South Korea for the period of 2015 to 2023, as well as the watershed average. Subsequently, a correlation analysis was conducted between the estimated values and actual measurements, along with an examination of the applicability of GEE. The results revealed that the surface soil moisture estimated for small areas within the soil moisture observatories of the watershed exhibited low correlations ranging from 0.1 to 0.3 for both VH and VV polarizations, likely due to the inherent measurement accuracy of the SAR satellite imagery and variations in data characteristics. However, the surface soil moisture average, which was derived by extracting the average SAR backscattering coefficient values for the entire watershed area and applying moving averages to mitigate data uncertainties and variability, exhibited significantly improved results at the level of 0.5. The results obtained from estimating soil moisture using GEE demonstrate its utility despite limitations in directly conducting desired analyses due to preprocessed SAR data. However, the efficient processing of extensive satellite imagery data allows for the estimation and evaluation of soil moisture over broad ranges, such as long-term watershed averages. This highlights the effectiveness of GEE in handling vast satellite imagery datasets to assess soil moisture. Based on this, it is anticipated that GEE can be effectively utilized to assess long-term variations of soil moisture average in major dam watersheds, in conjunction with soil moisture observation data from various locations across the country in the future.