• Title/Summary/Keyword: SACK 옵션

Search Result 9, Processing Time 0.021 seconds

An Effective Solution to Overcome the Restriction of SACK Blocks' Number in TCP SACK (오프셋을 활용한 효율적인 TCP SACK 메커니즘)

  • Lin, Cui;Hong, Choong-Seon
    • The KIPS Transactions:PartC
    • /
    • v.12C no.7 s.103
    • /
    • pp.1039-1046
    • /
    • 2005
  • TCP SACK is the unique mechanism to reflect the situation of sink's sequence space, some TCP variants and proposals can perform in conjunction with SACK mechanism for achieving optimal performance. By definition of RFC 2018, however, each contiguous block of data queued at the data receiver is defined in the SACK option by two 32-bit unsigned integers in network byte order. Since TCP Options field has a 40-byte maximum length, when error bursts now, we note that the available option space may not be sufficient to report all blocks present in the receiver's queue and lead to unnecessarily force the TCP sender to retransmit Packets that have actually been received by TCP sink. For overcoming this restriction, in this thesis, a new solution named 'one-byte offset based SACK mechanism' is designed to further improve the performance or TCP SACK and prevent those unwanted retransmissions. The results or both theory analysis and simulation also show that his proposed scheme operates simply and more effectively than the other existing schemes by means of the least bytes and most robust mechanism to the high packet error rates often seen in networks environment.

Improving Loss Recovery Performance of TCP SACK by Retransmission Loss Recovery (재전송 손실 복구를 통한 TCP SACK의 성능 향상 모델링 및 분석)

  • 김범준;김동민;이재용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7B
    • /
    • pp.667-674
    • /
    • 2004
  • The performance of transmission control protocol (TCP) is largely dependent upon its loss recovery. Therefore, it is a very important issue whether the packet losses may be recovered without retransmission timeout (RTO) or not. Although TCP SACK can recover multiple packet losses in a window, it cannot avoid RTO if a retransmitted packet is lost again. In order to alleviate this problem, we propose a simple change to TCP SACK, which is called TCP SACK+ in simple. We use a stochastic model to evaluate the performance of TCP SACK+, and compare it with TCP SACK. Numerical results evaluated by simulations show that SACK+ can improve the loss recovery of TCP SACK significantly in presence of random losses.

Performance Improvement of TCP SACK using Retransmission Fiailure Recovery in Wireless Networks (무선 네트워크에서 재전송 손실 복구를 통한 TCP SACK 성능 향상 방안)

  • Park, Cun-Young;Kim, Beom-Joon;Kim, Dong-Min;Han, Je-Chan;Lee, Jai-Yong
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.3
    • /
    • pp.382-390
    • /
    • 2005
  • As today's networks evolve towards an If-based integrated network, the role of transmission control protocol(TCP) has been increasing as well. As a well-known issue, the performance of TCP is affected by its loss recovery mechanism that is comprised of two algorithms; fast retransmit and fast recovery. Although retransmission timeout(RTO) caused by multiple packet losses can be avoided by using selective acknowledgement(SACK) option, RTO cannot be avoided if a retransmitted packet is lost. Therefore, we propose a simple modification to make it possible for a TCP sender using SACK option to detect a lost retransmission. In order to evaluate the proposed algorithm, simulations have been performed for two scenarios where packet losses are random and correlated. Simulation results show that the proposed algorithm can improve TCP performance significantly.

An Energy Efficient Transmission Scheme based on Cross-Layer for Wired and Wireless Networks (유.무선 혼합망에서 Cross-Layer기반의 에너지 효율적인 전송 기법)

  • Kim, Jae-Hoon;Chung, Kwang-Sue
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.6
    • /
    • pp.435-445
    • /
    • 2007
  • Snoop protocol is one of the efficient schemes to compensate TCP packet loss and enhance TCP throughput in wired-cum-wireless networks. However, Snoop protocol has a problem: it cannot perform local retransmission efficiently under the bursty-error prone wireless link. To solve this problem, SACK-Aware-Snoop and SNACK mechanism have been proposed. These approaches improve the performance by using SACK option field between base station and mobile host. However in the wireless channel with high packet loss rate, SACK-Aware-Snoop and SNACK mechanism do not work well because of two reason: (a) end-to-end performance is degraded because duplicate ACKs themself can be lost in the presence of bursty error, (b) energy of mobile device and bandwidth utilization in the wireless link are wasted unnecessarily because of SACK option field in the wireless link. In this paper, we propose a new local retransmission scheme based on Cross-layer approach, called Cross-layer Snoop(C-Snoop) protocol, to solve the limitation of previous localized link layer schemes. C-Snoop protocol includes caching lost TCP data and performing local retransmission based on a few policies dealing with MAC-layer's timeout and local retransmission timeout. From the simulation result, we could see more improved TCP throughput and energy efficiency than previous mechanisms.

Construction of a WAP Proxy and its Improvement for Wireless Communication Efficiency (WAP 프록시의 구축 및 무선통신 효율을 위한 개선)

  • Park, Kee-Hyun;Synn, Yang-Mo;Ju, Hong-Taek
    • The KIPS Transactions:PartC
    • /
    • v.11C no.3
    • /
    • pp.379-386
    • /
    • 2004
  • The WAP 2.0 system is a newly proposed wireless communication system by the WAP Forum for interoperability across Internet environment and the system takes charge of communication between WAP terminals and existing origin Web servers. The purpose of this paper is 1) to construct a WAP 2.0 proxy proposed by the WAP Forum and 2) to improve the WAP Proxy in order to increase communication efficiency between wired and wireless communication objects. The Improved WAP proxy constructed in this study provides links between wired and wireless communication environments using the split-TCP concept. However, unlike the split-TCP connection, The improved WAP proxy maintains TCP's end-to-end semantics and reduces overhead by avoiding operations as much as possible on the upper protocol layer. In addition, The improved WAP proxy supports SACK(Selective Acknowledgement ) option and Timestamp option for speedy re-transmission which leads to reduction of performance degradation. After constructing the improved WAP proxy under Linux environment, experiments have been taken. The experimental results show that, compared with the experiments when a WAP proxy proposed by the WAP Forum is used, both data transmission delay time and data transmission size decrease to show that communication efficiency is increased. In particular, as packet missing ratio Increases, data transmission size decreases, which demonstrates that the improved WAP proxy is very effective for performance improvement in wireless communication environment.

Performance Evaluation of TCP over Wireless Links (무선 링크에서의 TCP 성능 평가)

  • Park, Jin-Young;Chae, Ki-Joon
    • Journal of KIISE:Information Networking
    • /
    • v.27 no.2
    • /
    • pp.160-174
    • /
    • 2000
  • Nowadays, most widely used transport protocol, TCP is tuned to perform well in traditional networks where packet losses occur mostly because of congestion. TCP performs reliable end-to-end packet transmission under the assumption of low packet error rate. However, networks with wireless links suffer from significant losses due to high error rate and handoffs. TCP responds to all losses by invoking congestion control and avoidance algorithms, resulting in inefficient use of network bandwidth and degraded end-to-end performance in that system. To solve this problem, several methods have been proposed. In this paper, we analyse and compare these methods and propose appropriate model for improving TCP performance in the network with wireless links. This model uses TCP selective acknowledgement (SACK) option between TCP ends, and also uses caching method at the base station. Our simulation results show that using TCP SACK option with base station caching significantly reduces unnecessary duplicate retransmissions and recover packet losses effectively.

  • PDF

Modeling TCP Loss Recovery Latency for the Number of Retransmissions (재전송 개수를 고려한 TCP 손실 복구 과정의 지연 모델링 및 분석)

  • 김동민;김범준;이재용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.12B
    • /
    • pp.1106-1114
    • /
    • 2003
  • Several analytic models describe transmission control protocol (TCP) performance such as steady-state throughput as an averaged ratio of number of transmissions to latency. For more detailed analysis of TCP latency, the latency during packet losses are recovered should be considered. In this paper, we derive the expected duration of loss recovery latency considering the number of packet losses recovered by retransmissions. Based on the numerical results verified by simulations, TCP using selective acknowledgement (SACK) option is more effective than TCP NewReno from the aspect of loss recovery latency.

Implementation of TCP Retransmitted Packet Loss Recovery using ns-2 Simulator (ns-2 시뮬레이터를 이용한 TCP 재전송 손실 복구 알고리듬의 구현)

  • Kim, Beom-Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.741-746
    • /
    • 2012
  • Transmission control protocol(TCP) widely used as a transport protocol in the Internet includes a loss recovery function that detects and recovers packet losses by retransmissions. The loss recovery function consists of the two algorithms; fast retransmit and fast recovery. There have been researches to avoid nonnecessary retransmission timeouts (RTOs), which leads to selective acknowledgement (SACK) option and limited transmit scheme that are standardized by IETF (Internet Engineering Task Force). Recently, a method that covers the case in which a retransmitted packet is lost again has been propsed. The method, however, is not proved in terms of the additive increase multiplicative decrease (AIMD) principle of TCP congestion control. In this paper, therefore, we analyzed the method in terms of the principle by ns-simulations.

Effects of Retransmission Timeouts on TCP Performance and Mitigations: A Model and Verification (재전송 타임아웃이 TCP 성능에 미치는 영향과 완화 방안들의 모델링을 통한 성능 분석)

  • 김범준;김석규;이재용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7B
    • /
    • pp.675-684
    • /
    • 2004
  • There have been several efforts to avoid unnecessary retransmission timeouts (RTOs), which is the main cause for TCP throughput degradation. Unnecessary RTOs can be classified into three groups according to their cause. RTOs due to multiple packet losses in the same window for TCP Reno, the most prevalent TCP version, can be avoided by TCP NewReno or using selective acknowledgement (SACK) option. RTOs occurring when a packet is lost in a window that is not large enough to trigger fast retransmit can be avoided by using the Limited Transmit algorithm. In this Paper, we comparatively analyze these schemes to cope with unnecessary RTOs by numerical analysis and simulations. On the basis of the results in this paper, TCP performance can be quantitatively predicted from the aspect of loss recovery probability. Considering that overall performance of TCP is largely dependent upon the loss recovery performance, the results shown in this paper are of great importance.