ZEXP TCP SACK HIAHLIE 1039

s A O. S & O o) =
EANE 383 5839 TCP SACK HIAYZE
5 2.z 5 M
2 of
TCP SACKE sinkd €239 = JeE vehls §48 dAvFold, o A Bﬂvﬂ:ﬂ CPEL HA9 4%& $814 SACK HA
24 48 5 Uk RFC 2018914 SACK S4L 4412} & 497 ol 7 479 d4d E502 279 PHERZ A= Qi)
TCP g4 2=+ Yy 40ﬂ}°lE Zolg 7hA7l WEel oeist dAsEE o, TCP FA47 %011 AE EE dolg] 2254 49 ¥ alt
AL sS4 +7Po] Eahz] don, TCP 47} TCP sinkdll 9lsiA 48 aiAE-S BHastA Ad$aA 2 o8 BAE

ANMeE TCP SACKSY 4
A A s} AHE

o
=
q, #7245 87

r~|u

#HHst7] A8 2
o] EP“: *Hi
EHT 2=

A)
2

o

mechanism

AAYE

K3
=
=

f

oflel&

?|9l= : TCP, SACK, HACK

S PR BERE AdEE AAs] AsA
Fao] 243 AEHold AR ALY FAL JA4F vlolEE AR WEA TE
o] 42 BgAY WAUEYE St

‘one-byte offset based SACK

An Effective Solution to Overcome the Restriction of SACK Blocks’
Number in TCP SACK

Cui,

Lin Hong" - Choong Seon™

ABSTRACT

TCP SACK is the unique mechanism to reflect the situation of sink’s sequence space, some TCP variants and proposals can perform in

conjunction with SACK mechanism for achieving optimal performance. By definition of RFC 2018, however, each contiguous block of data
queued at the data receiver is defined in the SACK option by two 32-bit unsigned integers in network byte order. Since TCP Options
field has a 40-byte maximum length, when error bursts occur, we note that the available option space may not be sufficient to report all
blocks present in the receiver's queue and lead to unnecessarily force the TCP sender to retransmit packets that have actually been
received by TCP sink. For overcoming this restriction, in this thesis, a new solution named “one-byte offset based SACK mechanism” is
designed to further improve the performance of TCP SACK and prevent those unwanted retransmissions. The results of both theory
analysis and simulation also show that his proposed scheme operates simply and more effectively than the other existing schemes by

means of the least bytes and most robust mechanism to the high packet error rates often seen in networks environment.

Key Words : Transmission Control Protocol, Selective Acknowledgment, Header Checksum

1. Introduction

Transmission Control Protocol(TCP)
protocol. TCP provides reliable connection-oriented data

is a transport

delivery by employing acknowledgments(ACKs), sequence
numbers, and timers. TCP has been widely applied in
many applications : WWW, E-mail, file transfer, remote
login, database access, X-windows, satellite communication,

etc. Currently, most network traffics are carried by TCP.

¥ 2 dFE MIC % ITRC Project, 283, BER 1T FuAdrtgde
Astgm AT o) %ol 4 S.

t 2 8 A ARgsta ARe S “W:eré

t+ Fed A oeta AR TG 1
=B 20059 7 219, AR - 2005&11 119 149

TCP uses a cumulative acknowledgment scheme in
which out-of-sequenced data packets cannot be covered
by acknowledgement number field in TCP header. It re-
sults that TCP sender only can retransmit just one drop-
ped packet per round-trip time. Hence, since multiple
packets are lost from a window, this forces the sender to
either wait a more round trip time to find out about each
lost packet, or unnecessarily retransmit segments which
have been successfully received. Therefore, multiple pack-
et losses from a data window of TCP can have a cata-
strophic effect on TCP throughput. In order to correct
this unwanted behavior, the TCP Selective Acknow-
ledgment(TCP SACK) scheme has been proposed in the

1040 HEx2ISS=EX C M12-CH HM7=(2005.12)

face of multiply dropped segments. With this SACK
mechanism, the data receiver can inform the sender the
information about all segments that have arrived success-
fully, thus TCP sender can retransmit those dropped seg-
ments at the same time as defined in RFC 2018(TCP
Selective Acknowledgement Options)[1].

Although with the emergence of new TCP variants, a
plenty of studies show that TCP SACK is not the most
perfect in comparison with other TCP variants’ throughput,
SACK has an outstanding advantage which cannot be
possessed by others, that is, SACK mechanism is the
unique mechanism to reflect the situation of sink's se-
quence space, other TCP variants and proposals can per-
form in conjunction with SACK mechanism for achieving
optimal performance. For example, TCP Header Checksum
(HACK) mechanism can achieve the most optimal per-
formance as running together with TCP SACK [2].

However, by definition of RFC 2018[1], each contiguous
block of data queued at the data receiver is defined in
the SACK option by two 32-bit unsigned integers as two
edges’ sequence number, hence a SACK option that
specifies n blocks will have a length of 8*n+2 bytes.
Because TCP Options field has a length limit of 40 bytes,
and Timestamp option is expected for TCP extensions for
high performancel3], which takes an additional 10bytes
{plus two bytes of padding), thus SACK option will have
the room for only three SACK blocks at most in usual
case, which is also the default value in TCP SACK in
the network simulator(ns-2). Furthermore, if the SACK
option is to be used with both the Timestamp option and
T/TCP(TCP Extensions for Transactions)[4], the TCP
option space would have room for only two SACK blocks
[7.

This restriction can, under error bursts’ environment,
cause unnecessary refransmission because of no enough
space to convey all information about received segments.
Thereby it will bring unnecessary shrinkage of TCP con-
gestion window and degrade the performance of TCP
connections.

In this paper, we present a novel solution named
“One-byte Offset Based SACK Mechanism”(hereinafter
referred to as “OOBSM”) to overcome this restriction. By
implementation, it is shown that the TCP receiver can
convey entire information of receiver’s data queue using
a few bytes(<10bytes), no matter how poor the network
environment is. In other words, we optimize the structure
of TCP SACK option format by minimizing its size by
an order of magnitude down to several bytes. The proposed
OOBSM scheme thus ensures that the SACK mechanism

can be unrestrictedly implemented in conjunction with any
other mechanisms related to the TCP option field for
achieving a better performance.

2. Related Works

2.1 Standard SACK Option Format

The standard SACK option format shown in (Fig. 1) is
defined in RFC 2018[1). Its limitation has been described
in section 1.

, Kind=5 , Length

Left edge of 1% block

Right edge of 1% block

Left edge of o block

Right edge of o block
(Fig. 1) Standard SACK option format

2.2 Option Format of HACK + SACK

The HACK scheme was proposed to extend TCP by
adding a separate checksum for the header portion of
each segment while traditional TCP carried only one
checksum, which was for the whole segment. By means
of this strategy in lossy environments, even if corruptions
occur in the segments’ data portion due to the random
nature of the bit errors, as long as the header is in-
tegrated, TCP receiver will send a prompt special ACK
back to the sender to indicate the corrupted segment at
once. Hence TCP sender can distinguish corruption from
congestion and retransmit this corrupted segment imme-
diately without the necessaries to wait for three duplicate
ACKs and shrink congestion window.

Nevertheless, HACK will only ask for retransmissions
of the corrupted segments whose headers can be recovered
and have no help for those irretrievable ones. As a re-
inforcement leverage upon the out of order packets, if
SACK is also activated, then all damaged segments will
be detected and handled by different schemes accordingly.

For example, if say 5 packets are corrupted, HACK
may only be able to recover the headers of packets 2, 4
and 5 with packets 1 and 3 being irretrievable. Under this
situation, HACK will only ask for retransmissions of the
packets 2, 4 and 5 in spite of packets 1 and 3. This will
leave gaps in the receiving window and lead to degra-
dation of TCP performance finally unless SACK is also
activated at the same time for detecting out-of-order

segments. Therefore, TCP can achieve a better perfor-
mance when HACK is implemented in conjunction with
SACK.

However, The HACK scheme also needs to occupy op—
tion space in TCP header, and its option format is shown
in (Fig. 2).

| Kind=x I Length

Left edge of corupted segment

Right edge of corrupted segment
| Kind=5 l Length
Left edge of 12 SACK block
Right edge of 15t SACK hlock
Left edge of 2 SACK block
Right edge of 2 SACK block

(Fig. 2) Option Format of HACK + SACK

2.3 Related Work

In [13], a concept of offset is presented in modification
of the SACK option format for sending more information
about SACK blocks. The modification of SACK option
format is proposed as (Fig. 3). By presentation of [13],
instead of sending all absolute 32-hit sequence number
for all edges of each segment block, only send one 32-bit
absolute sequence number for the right edge of the Ilst
block(denote it by A). For the rest, represents other
edges as offsets from edge A, and denote them by 012,
021, 022, --*Onl, On2, where 012 is the offset of the left
edge of first block from A, 021 and 022 are the offsets
from A to right and left edges of the second block re-
spectively, and so on.

Kind=5 Length X

Right edge of 1% block (A)
(32-bit absolute sequence number)
Offset for left edge

of 1t block romdA | ... | e
Offset for right Offset for left Tnis-
edge of n block edge of nt® block ;“::h
from A from A

(Fig. 3) SACK option format proposed in [13]

We noted that, this field which specified the size in
bits of each offset is an extra byte comparing with
standard SACK option format, labeled ‘X'. Its value(X) is
variable for every ACK, and result depends on the big~
gest number among all offsets(denote it by Omax),
equaling to:

This means that all offsets belong to one ACK can be

LIMZ BET 23H2! TCP SACK HIFHLIS 1041

represented by X bits. Therefore, as long as sending the
number X' to TCP sender in SACK option field, TCP
sender can correctly read all offsets and be aware of all
edges’ absolute sequence numbers by subtracting the off-
set from the value of A.

By definition of SACK option format proposed in [13],
n blocks will have a length:

X =[108; Op | ey

Length, = {(%H)]

)

and the maximum number of n will be(with timestamp
option) :

N {(30_7)x4+1J
X 2

3. Our Proposal

3.1 The Proposed OOBSM Mechanism

Since TCP does not change segment size once the
TCP connection is established, and normally all segments
preceding the last one has. the maximum segment
size(MSS) as their size. Hence, given a baseline in abso-
lute sequence number, as long as we know a offset in
segment unit from baseline to certain point, then we can
accurately work out that points’ absolute sequence num-
ber by calculating the formula of “baseline in absolute
sequence number+offset in segment unit*size of segment
in bytes”. We well use this characteristic in this paper
and present a very effective SACK mechanism. In this
OOBSM mechanism, we regard the absolute sequence
number indicated by acknowledgement number field in
TCP header as baseline, regard every edge of SACK
blocks as respective point. Then, we can calculate the
first point’s absolute sequence number by above formula
as long as we know the offset from the baseline to that
point, and then regard this point's absolute sequence
number as new baseline to compute next point's absolute
sequence number. By implementing this cycle till last
point, TCP source can be aware of entire situation of
sink’s sequence space correctly. Therefore, TCP source
certainly can effectively retransmit those segments which
have actually been lost together with new segments in a
burst of data sending and avoid any unnecessary retrans—
mission.

1042 FEHMEIEEl=2X C M12-CH H7=(2005.12)

In order to minimize the size of SACK option, referring
to (Fig. 4) and (Fig. 5), in addition to using Acknow-
ledgement number field as the baseline, we represent ev-
ery SACK block by one or two one-byte offsets based
on segment unit instead of two 32-bit absolute sequence
numbers or sequence number’s offsets. As for using one
or two offsets to describe one SACK block, it depends on
the size of the gap previous that SACK block. If the gap
is single segment gap, then one offset is enough; if not,
two offsets are necessary. It is because in sink's se-
quence space, gap and SACK block are one-by-one,
therefore, while the gap previous SACK block is single
segment gap, the left edge’s absolute sequence number of
that SACK block can be known as the newest baseline
plus the size of segment in bytes by default even if we
ignore the corresponding offset. That is to say, between
every two one-byte offsets which are smaller than 128,
we ignore one offset which related to single segment gap.
This method do not influence running efficiency and final
correct result at all, but do greatly reduce the size of
SACK option and reserve a plenty of option space for
other usage of TCP.

In particular, those one-byte offsets named offset!, off-.

set?, ---, offsetn respectively represent the interval from
the first SACK block's left edge with respect to the
baseline, the interval from the first SACK block’s right
edge with respect to the first SACK block’s left edge, the
interval from the second SACK block’s left edge with re-
spect to the first SACK block’s right edge, and so on.
Wherein, considering the one-by-one relationship between
gap and SACK block and the fixed size in bytes of each
segment, we ignore those offset corresponding to single
segment gap. Obviously, by 32-bit absolute sequence
number as baseline(by acknowledge number field), size of
segment in bytes and each one-byte offsets based on
segment unit, the sender can easily be aware of entire
accurate situation of sink’s sequence space.

As shown in above (Fig. 4), in our proposed SACK
option format, each offset field consists of 1byte. Wherein,

Kind=5

M- real offset M- | resl offcet M- | meadoffcet
Flag [(7 bits) [flag | (7bits) g | (7bits)

€ offsetl D€ offset2 IE offset3)

Reserve for Timestamp and other usage of TCP

(Fig. 4) Proposed SACK option format

Baseline
indioated by
Adnum field

Oftsatt with M_flag.
Offsett=128+2=130

b T T
(Fig. 5) llustration of Proposed SACK

2 segments’ gap -+

first bit is multiple segments’ gap flag(denoted it by

- M-flag), and other 7 bits represent real offset, 7 bits can

represent up to 27-1=127. We know that if the interval
between 2 adjacent gaps in sink’s sequence space is larg—
er than 127 segments, that means TCP sink have sent up
to 127 duplicate ACKs, it will directly lead TCP sender
to cause either retransmission timeout or fast retrans—
mission after receiving 3 duplicate ACKs, so we think 1
byte is enough. As for the interpretation of multiple seg-
ments’ gap flag(M_flag), “1” indicates that this offset
corresponds to multiple lost segments’ gap; otherwise, “0”.

All in all, by OOBSM mechanism, 40 bytes are avail-
able for(40-2)/2=19 SACK blocks at least, considering the
fact we ignore those offsets indicate single segment’s
gaps which mostly occur in sequence space, the available
maximum number of SACK blocks is far bigger than 19.
Actually. It is clear that we do not need to represent so
many SACK blocks’ information by one ACK packet.
Therefore, we can minimize the payload of ACK packet
and save enough option space to other usage of TCP so
as to further improve TCP performance.

3.2 Evaluation

Through analysis and comparing with RFC 2018[1] and
proposal in [13] respectively under the same scenario, we
can easily understand the difference from each other. In
this scenario, we assume the starting sequence number is
5000 and TCP sender sends a burst of 11 segments, each
containing 1000 data bytes. In this sampled scenario, ev—
ery other segment is lost. (Fig. 6) illustrates the case of
current implementation under this scenario; (Fig. 7)
shows the case of implementing proposal in [13]; and
(Fig. 8 represents the case of implementing OOBSM
mechanism.

3.2.1 Current Implementation

From (Fig. 6), it is noted that, in the current imple-
mentation, by the 9th segment(sequence number 13000~
13999), 34 bytes(2+4#8) have been used up for sending
information of 4 SACK blocks. When the 11th segment is
received, we are only able to send information about the
latest 4 blocks, losing information about the 3rd segment
(sequence number 7000-7999). Especially, if time stamp

option is used, then just only 3 blocks can be sent, that
is, the 5th segment’s information will also be dis-
carded(sequence number 9000~9999). While error burst
occurs in return path of ACK, it means that TCP sender
will unnecessarily retransmit 3rd and 5th segments which
have successfully arrived at receiver in fact.

Disputet | ACK bum el First Blodk Second Block Third Elock FmggH
Ledge | R L R L R L R
5000 NamlAK60)| Ha | FA | NA va | v | wa | ma | wa
6000 (Lost) | i
000 DupACK:6000 | 7000, 8000 | NA NA | WA | NA | NA | WA .
3000 (Log) i !
9000 Dup ACK:600 | 9000 1 10000 | 7000 | 8000 | NA | NA | WA | NA
10000 Lost) ! .
| 1o DpACK:600 | llow | 12000 | om0 | oo | 7om0 | eoon | mA | KA
| 12000 Losty B
13000 Dup ACK:6000 | 13000 14000 | 1000 | 12000 | soo0 | 10000 | 7000 | 000
14000 (Lost) ']
15000 Dup ACEC6M0 | 15000 16000 | 13000 | 14003 | llood | 13000 | sao0 | 10000

(Fig. 6) Case with the current implementation

3.2.2 Implementation of Proposal in [13) .

By the implementation of the proposed scheme in [13]
as shown in (Fig. 7), because the maximum offset=1600
0~7000=9000, according to the algorithm defined in [13],
we have to allocate every offset field X bits:

X =[log, 90007 =14 (bits) @)

Hence, the size of SACK option in bits is equal to:

=8(kind)+8(length)+8(define ~ X)+32(absolute sequence

number for A)+9(the number of offsets)*14(length of
each off-set field)

=182 bits=23 bytes.

If considering timestamp option, the size of used
SACK option space will be up to 33 bytes.

That is to say, if not considering the factor of per-
forming in conjunction with other mechanism(e.g.
HACK+SACK, etc.), it seems that this approach is also
robust enough to cope with errors burst’'s scenarios.
However, it must be pointed out that, for each ACK
packet, TCP sink has to compute the maximum off-
set(Omax), and then take a long runtime to accurately
separate every offset field in bits, has to perform a plenty
of read or write operation base on bits instead of bytes,
it will really take much run-time. Especially, although
this proposal can also improve the performance when it
performs individually, it will also feel no enough SACK
option space when it tries to work in conjunction with
other TCP variants or proposals for achieving optimal
performance. In conclusion, their usage of SACK option
field is inefficient comparing with ours.

LQEME 2ED EFL! TCP SACK HIAHUE 1043

Ditapadket ACKNum | X | FirBlock | Secand Blo Third Block, Forh Bock Fifth Block
field R L R L R L R L R L
5000 Noomuk6000 | NA| NA | WA | NA | NA | NA | MA | WA | NA | NA | Ha
6000 (Lost)
7000 Dupacki6000 | 10 | #000 {1000 | WA | NA | MA | MA | Na | NA | HA | W&
000 (Logty
9000 Dup +k: 6000 | 12 | 10000 | 1000-{ 2000 | 3000 | NA | NA | NA | NA | NA | WA
10000 (Lost)
| 11000 | Dupadeom | 13 | 12000 | 1000 | 2000 | 3000 | 4000 | 5000 | NA | WA | wa | WA |
12000 (Lost) .
13000 Dup adc 6000 | 13 | 14000 | 1000 | 2000 | 3000 | 4000 | $000 | 6000 | 7000 | NA | NA
14000 (Lost
15000 Dup ack: 6000 | 14 | 16000 | 1000 | 2000 | 3000 | 4000 | 5000 | 6000 | 7000 | G000 | 9000

(Fig. 7) the implementation of proposal in [13]

3.2.3 Implementation of OOBSM mechanism

Now let us take a look at the implementation of pro-
posed OOBSM mechanism as shown in (Fig. 8). We only
need to allocate SACK option space with 1(kind)+1
(length)+5*1(offsets)=7bytes, we can still left 33 bytes.
Thus, the implementation of proposed OOBSM mechanism
is more effective. Especially as performing in conjunction
with other mechanisms for improving TCP performance,
this mechanism can cope well by using least bytes under
any scenarios. Therefore, the proposed OOBSM mecha-
nism not only can convey more information to TCP
sender, but also can greatly shrink the SACK option
space furthest. It proved that this mechanism is more ef-
fective than others.

4. Simulation

We performed the simulation using the ns-2 network
simulator, version 2.27[14] and compared our proposed
OOBSM'’s behavior with the implementations of both
standard SACK and modified SACK in [13].

Qur simulations consist of a single TCP flow traver-
sing a 2M bandwidth Oms delay link and the flow lasts
200 seconds. In all simulations, each segment contains
1000 bytes user data and each packet size is 1040 bytes.
The standard SACK option is assumed to have room for
three SACK blocks. The maxburst parameter, which lim-
its the number of packets that can be sent in response to
a single incoming ACK packet, is experimental, and is
not necessarily recommended for current SACK imple-
mentations.

In order to represent SACK blocks' edges by one-byte
offset instead of 32-bit absolute sequence number, we did
the followings :

~-modified the structure of the function of hdr_tcp{};
~replaced the sentence of “int sack_area_INSA+1](2]"
by the sentence of “u_char sackZ_area_{ NSA2+1]";
-replaced these two sentences of

1044 FEXNE|E2I=EX C M12-CE HM7=(2005.12)

“int& sa_left(int n) { return (sack_area_[n][0]); }" and
“int& sa_right(int n) {return (sack_area_[nj[1]);}” by
“u_char& sa2_offset(int n) {return (sack2_area_[nl);}";
—changed the upper limit of maximum number of
SACK blocks from 3 to 15.

For sending correct information of entire sink’s se-
quence space by a set of one-byte offsets, we modified
the following function :

void Sacker:‘append_ack (hdr_cmn* ch, hdr_tcp* h,
int old_seqno)

On the contrary, in order to let TCP sender be aware
of entire situation of sink’s sequence space correctly by
single ACK, we modified the following function :

int ScoreBoardRQ:: UpdateScoreBoard (int last_ack_,
hdr_tcp* tcph)

Data packet ACK Num field offset] offset2 offset3 offsetd Offsets

5000 Hommal ACK: 6000 NA NA NA NA NA
6000 (Lost)

7000 Dap ACK: 6000 1 NA NA NA NA
8000 (Logt)

9000 Dup ACK: 6000 1 1 N& HA HA
10000 (Losty

10w Dup ACK: 6000 i 1 1 N& HNA
12000 (Lost)

13000 Dup ACK: 6000 1 1 1 i NA
14000 (Lost)

15000 Dup ACK: 6000 1 1 1 1 1

(Fig. 8) Case with our proposed implementation

In the implementations of both OOBSM and modified
SACK scheme in [13] in simulator, the parameter
“maxburst” is limited to four packets even if the sender’s
congestion window would allow more packets to be sent.

In addition, we used two states error model in order to
product error burst effect and in this two states error
model, every good state lasts 0.5 seconds and every bad
state lasts 0.015 seconds, when this link is in good state,
it will continue to last the same state at the next instant
with probability 095, and with a probability 005 the
transition to the bad state takes place. Similarly, when
this link is in bad state, it will continue to last the same
state at the next instant with probability 0.55, and with a
probability 045 the transition to the good state takes
place. Also, this link is error free in good state and takes
place packet dropping with probability 0.25 in bad state.

By analysing the behavior of original TCP SACK in
(Fig. 9), it is noted that TCP connection suffers two

1326
B .
1324
.
1322
® -
1320
[-

1318
5 - WXAL

1316
%] .
= 1314 * &
FRET . M
g L] s
& 1310

. &
1308
. a
1306 + 4
+ &
1304
. A
1302
. a

1300
8.065 8.07 8.075 8.08 8.085 8.09 8.09% 8.1 8.1035 8.11 8.11%

Tine{(sec)

[# Packets B Dropped packets Alcks x Dropped acks |

(Fig. 9) The behavior of original TCP SACK

consecutive bad state from around 8.078 second to
8.108. Especially, the situation from around 8.078 second
to 8.092 second will directly lead to five SACK blocks in
receiver’'s date queue. In detail, the first block consists of
a single segment with number 1314, the second block
consists of two segments with number 1316 and 1317, the
third block is also a single segment block with number
1320, the fourth block consists of three segments with
number from 1322 to 1324 and the fifth block consists of
two segments with number 1327 and 1328. Because origi-
nal TCP SACK only has option space for up to three
SACK blocks, receiver has to report last three SACK
block information to sender and lose first and second
SACK block information. It results sender unnecessarily
to retransmit those segments with number 1314, 1316 and
1317 at 8.105 second and 8.107 second respectively which
actually have been received by receiver,

In contrary to the behavior of original TCP SACK in
(Fig. 9), referring to (Fig. 10), although five SACK blocks
are also created in receiver’'s data queue under the same
lossy environment, our proposed OOBSM mechanism can
avoid those unwanted retransmission perfectly.

(Fig. 11) shows that when TCP connections are esta-
blished over a long period under error bursts environ-
ment, a number of unnecessary retransmission of packets
can decrease the throughput of TCP connections. Thus
the problem with TCP SACK that we see graphically

in (Fig. 9) can lead to lower throughout. However, We
see that the implementation of proposed OOBSM can
avoid most unnecessary degradation of TCP performance
and always gives a better throughput than others.
Although the modified SACK mechanism proposed in [13]
also performs better than the implementation of standard
TCP SACK, because of fussy bit-based operation and in-
sufficient capability, its behavior is not good as ours yet

when the environment further deteriorates(see the case at
60sec).

1330

*
1328 +
*
1326 - T
1324 4
+
1822
) +
5 1920 " P
2 1318 "
= 1516 < &
B 1314 *
2 L3 *
g 1312
' . A
1310 * £
03 A
1308 +
+ A
1306 < -
1304 &
- A
1302 e
+ A
1300
8.065 807 8075 .08 808 805 8035 81 £105 811 8115
Time (sec)
macke(s ¥ Dropped packets & Acks x Dropped acks |
(Fig. 10) The behavior of proposed TCP SACK
160
" \\ \/ \‘v
v
~
wu
L
& 150
>
=
2 T
'EAJ 145
3
i
= 140

1 20 40 60 80 100 120 140 160 180 200
Tine(secs)

[—¢—Standard SACK —4—Propesed SACK —0—Srijith's SACK |

(Fig. 11) Comparison of various SACK's throughput

5. Conclusions

In this paper, we talked about the advantages of
SACK mechanism, that is, this mechanism can perform in
conjunction with other mechanisms in order to achieve
the optimal performances.

However, the restriction of SACK blocks’ number in
the implementation of standard SACK mechanism in-
dicates that it unfit to handle scenarios under error
bursts’ environment. Especially, the space-lacking short-
coming will be much notable if there are other mecha-
nisms using selective acknowledgments for TCP congestion
control.

Our proposed OOBSM mechanism can primely overcome
above problems. Although the proposed scheme in [13]
can also improve the performance of SACK mechanism
when it performs individually, however, through evaluat-
ing its algorithm and performance, it is shown that there
is no enough SACK option space yet when it tries to
work in conjunction with other mechanisms for optimal

QIEMNE 2HED SEXP! TCP SACK HIHLUE 1045

performance. In addition, its algorithm decides that it will
take much more option space and much more runtime
than ours. The result of simulations also show that the
implementation of our proposed OOBSM mechanism is
better than others by means of the least bytes and most
robust mechanism to the high packet error rates often
seen in wireless networks.

References

[1] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow, “TCP se-
lective acknowledgment and op-tions”, RFC 2018, IETF,
October, 1996.

[2] Balan, RK,; Lee, BP; Kumar, KRR.; Jacob, L; Seah,
W.KG.; Ananda, AL. “TCP HACK : TCP Header Checksum
Option to Improve Performance over Lossy Links”,
INFOCOM 2001. IEEE , Volume : 1, 22~26 April, 2001 Pages
1309~318 Vol.l.

[3] V. Jacobson, R. Braden, D. Borman, “TCP Extensions for
High Performance”, RFC 1323, IETF, May, 1992.

[4] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, “An Extension
to the Selective Acknowledgement(SACK) Option for TCP”,
RFC 2883, IETF, July, 2000.

[56] M. Allman, NASA Glenn, V. Paxson, W. Stevens “TCP
Congestion Control”, RFC 2581, IETF, April 1999.

[6] Jacobson, V., “Congestion Avoidance and Control”, Computer
Communication Review, Vol18, No4, pp.314~329, Aug.,
1988,

[7}1 K. Fall, S. Floyd, “Simulation based Comparisons of Tahoe,
Reno, and SACK TCP”, Computer Communications Review,
Vol.26, pp.5~21, 199.

[8] Floyd, S. and T. Henderson, “The NewReno Modification to
TCP’s Fast Recovery Algorithm”, RFC 2582, April, 1999.

[9] Braden, R., “Requirements for Internet Hosts-Communication
Layers”, STD 3, RFC 1122, October, 1989.

[10] Luigi A. Grieco and Saverio Mascolo, “Performance Evalu-
ation and Comparison of Westwood+, New Reno, and Vegas
TCP Congestion Control”, ACM, 2004.

[11] S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang,
“TCP Westwood : End-to-end bandwidth estimation for ef-
ficient transport over wired and wireless networks,” in ACM
Mobicom 2001, Rome, Italy, July, 2001.

[12] Matthew Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn
Romanow. “TCP Selective Acknowledgment Options,”.
(Internet draft, work in progress), 1996.

[13] K.N. Srijith, Lillykutty Jacob, AL. Ananda, “Worst-Case
Performance Limitation of TCP SACK and a Feasible
Solution”, IEEE Journal on Selected Areas in Commu- nica-
tions, 2002.

[14] Network Simulator(ns-2), available from http://www.isi.

edu/nsnam/ns/.

1046 BEMLIEZ =X C H12-CH H)722(2005.12)

| 2|

e-mail : lincui@cs.knu.ac.kr

1987\ Tianjin University AALF 3 3(-F
&)

20054 A3 hei 7AFE TeHE AR

20051 ~ A3 7S ojska 2 FE et ub
RER

AL FAUENZ, MENZ QoS

Y=

E s

cshong@khu.ac.kr

s fgta A3 A
Aggn dtd #ATEHE
A AL

Keio University AR EANF8tAF
(F-&akat)

HAnd, AAUE

